Saltar al contenido
MilliporeSigma
  • Development and validation of a fully automated solid phase microextraction high throughput method for quantitative analysis of multiresidue veterinary drugs in chicken tissue.

Development and validation of a fully automated solid phase microextraction high throughput method for quantitative analysis of multiresidue veterinary drugs in chicken tissue.

Analytica chimica acta (2019-02-25)
Abir Khaled, Emanuela Gionfriddo, Vinicius Acquaro, Varoon Singh, Janusz Pawliszyn
RESUMEN

This paper presents the development and validation of a fully automated, high-throughput multiclass, multiresidue method for quantitative analysis of 77 veterinary drugs in chicken muscle via direct immersion solid phase microextraction (DI-SPME) and ultra-high pressure liquid chromatography-electrospray ionization - tandem mass spectrometry (UHPLC-ESI-MS/MS). The selected drugs represent more than 12 different classes of drugs characterized by varying physical and chemical properties. A Hydrophilic-lipophilic balance (HLB)/polyacrylonitrile (PAN) extraction phase, prepared using HLB particles synthesized in-house, yielded the best extraction/desorption performance among four different SPME extraction phases evaluated in the current work. The developed SPME method was optimized in terms of SPME coating and geometry, desorption solvent, extraction and rinsing conditions, and extraction and desorption times. Multivariate analysis was performed to determine the optimal desorption solvent for the proposed application. The developed method was validated according to the Food and Drug Administration (FDA) guidelines, taking into account Canadian maximum residue limits (MRLs) and US maximum tolerance levels for veterinary drugs in meat. Method accuracy ranged from 80 to 120% for at least 73 compounds, with relative standard deviation of 1-15%. Inter-day precision ranged from 4 to 15% for 70 compounds. Determination coefficients values were higher than 0.991 for all compounds under study with no significant lack of fit (p > 0.05) at the 5% level. In terms of limits of quantitation, the method was able to meet both Canadian and US regulatory levels for all compounds under study.