Saltar al contenido
MilliporeSigma

Direct Regulation of the EFR-Dependent Immune Response by Arabidopsis TCP Transcription Factors.

Molecular plant-microbe interactions : MPMI (2018-11-28)
Benjamin J Spears, T C Howton, Fei Gao, Christopher M Garner, M Shahid Mukhtar, Walter Gassmann
RESUMEN

One layer of the innate immune system allows plants to recognize pathogen-associated molecular patterns (PAMPS), activating a defense response known as PAMP-triggered immunity (PTI). Maintaining an active immune response, however, comes at the cost of plant growth and development; accordingly, optimization of the balance between defense and development is critical to plant fitness. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor family consists of well-characterized transcriptional regulators of plant development and morphogenesis. The three closely related class I TCP transcription factors TCP8, TCP14, and TCP15 have also been implicated in the regulation of effector-triggered immunity, but there has been no previous characterization of PTI-related phenotypes. To identify TCP targets involved in PTI, we screened a PAMP-induced gene promoter library in a yeast one-hybrid assay and identified interactions of these three TCPs with the EF-Tu RECEPTOR (EFR) promoter. The direct interactions between TCP8 and EFR were confirmed to require an intact TCP binding site in planta. A tcp8 tcp14 tcp15 triple mutant was impaired in EFR-dependent PTI and exhibited reduced levels of PATHOGENESIS-RELATED PROTEIN 2 and induction of EFR expression after elicitation with elf18 but also increased production of reactive oxygen species relative to Col-0. Our data support an increasingly complex role for TCPs at the nexus of plant development and defense.