Saltar al contenido
MilliporeSigma

Erythropoietin reduces epileptogenic processes following status epilepticus.

Epilepsia (2008-05-16)
Kon Chu, Keun-Hwa Jung, Soon-Tae Lee, Jin-Hee Kim, Kyung-Muk Kang, Hyun-Kyung Kim, Jae-Sung Lim, Hee-Kwon Park, Manho Kim, Sang Kun Lee, Jae-Kyu Roh
RESUMEN

Erythropoietin (EPO) has neuron and astroglial protective effects via reduction of tissue-injuring molecules such as reactive oxygen species, glutamate, inflammatory cytokines, and other damaging molecules. Although EPO may constitute an effective therapeutic modality in cases of epileptic insult, no study has been performed on the effects of exogenous EPO on the chronic seizure formation. In this study, we attempted to investigate if EPO could modulate the altered microenvironment in the epileptic rat brain. Morphological changes in the hippocampi of rats subjected to lithium-pilocarpine-induced status epilepticus (SE) were examined with respect to neuronal loss, inflammation, blood-brain barrier (BBB) leakage, and cell genesis. Spontaneous recurrent seizures (SRSs) were investigated by long-term video-EEG monitoring. EPO receptor (EPOR) was found to be increased in the hippocampus after SE. Administered EPO prevented, during the latent period following SE, BBB leakage, neuronal death, and microglia activation in the dentate hilus, CA1, and CA3, and inhibited the generation of ectopic granule cells in the hilus and new glia in CA1. Moreover, EPO reduced the risk of SRS development. These findings suggest that EPO has a potential therapeutic role in the setting of acute epileptic insults.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anticuerpo anti-NeuN, clon A60, clone A60, Chemicon®, from mouse
Sigma-Aldrich
Anticuerpo de burro anti-IgG de conejo, conjugado con Cy3, especie adsorbida, Chemicon®, from donkey