Saltar al contenido
MilliporeSigma
  • Up-regulation of HO-1 promotes resistance of B-cell acute lymphocytic leukemia cells to HDAC4/5 inhibitor LMK-235 via the Smad7 pathway.

Up-regulation of HO-1 promotes resistance of B-cell acute lymphocytic leukemia cells to HDAC4/5 inhibitor LMK-235 via the Smad7 pathway.

Life sciences (2018-06-11)
Yongling Guo, Qin Fang, Dan Ma, Kunling Yu, Bingqing Cheng, Sishi Tang, Tingting Lu, Weili Wang, Jishi Wang
RESUMEN

HDAC4/5 and Smad7 are potential therapeutic targets for the onset and progression of B-cell acute lymphocytic leukemia (B-ALL) and indices for clinical prognosis. In contrast, HO-1 (heat shock protein 32) plays a key role in protecting tumor cells from apoptosis. HDAC4/5, HO-1 and Smad7 expressions in 34 newly diagnosed B-ALL cases were detected by real-time PCR and Western blot. Lentivirus and small interference RNA were used to transfect B-ALL cells. The expression of Smad7 was detected after treatment with LMK-235 or Hemin and ZnPP. Apoptosis and proliferation were evaluated by flow cytometry, CCK-8 assay and Western blot. HDAC4/5 was overexpressed in B-ALL patients with high HO-1 levels. Increasing the concentration of HDAC4/5 inhibitor LMK-235 induced the decrease of Smad7 and HO-1 expressions and the apoptosis of B-ALL cells by suppressing the phosphorylation of AKT (Protein kinase B). Up-regulating HO-1 alleviated the decrease of Smad7 expression and enhanced B-ALL resistance to LMK-235 by activating p-AKT which reduced the apoptosis of B-ALL cells and influenced the survival of leukemia patients. Silencing Smad7 also augmented the apoptosis rate of B-ALL cells by suppressing p-AKT. HO-1 played a key role in protecting tumor cells from apoptosis, and HDAC4/5 were related with the apoptosis of B-ALL cells. LMK-235 may be able to improve the poor survival of leukemia patients.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
(Tyr[SO3H]27)Cholecystokinin fragment 26-33 Amide, ≥97% (HPLC), powder
Sigma-Aldrich
MISSION® esiRNA, targeting human SMAD7