Saltar al contenido
MilliporeSigma

SPHK1-S1PR1-RANKL Axis Regulates the Interactions Between Macrophages and BMSCs in Inflammatory Bone Loss.

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (2018-01-30)
Lan Xiao, Yinghong Zhou, Lingxin Zhu, Shasha Yang, Rong Huang, Wei Shi, Bin Peng, Yin Xiao
RESUMEN

Accumulating evidence indicates that the immune and skeletal systems interact with each other through various regulators during the osteoclastogenic process. Among these regulators, the bioactive lipid sphingosine-1-phosphate (S1P), which is synthesized by sphingosine kinase 1/2 (SPHK1/2), has recently been recognized to play a role in immunity and bone remodeling through its receptor sphingosine-1-phosphate receptor 1 (S1PR1). However, little is known regarding the potential role of S1PR1 signaling in inflammatory bone loss. We observed that SPHK1 and S1PR1 were upregulated in human apical periodontitis, accompanied by macrophage infiltration and enhanced expression of receptor activator of NF-κB ligand (RANKL, an indispensable factor in osteoclastogenesis and bone resorption) and increased numbers of S1PR1-RANKL double-positive cells in lesion tissues. Using an in vitro co-culture model of macrophages and bone marrow stromal cells (BMSCs), it was revealed that in the presence of lipopolysaccharide (LPS) stimulation, macrophages could significantly induce SPHK1 activity, which resulted in activated S1PR1 in BMSCs. The activated S1P-S1PR1 signaling was responsible for the increased RANKL production in BMSCs, as S1PR1-blockage abolished this effect. Applying a potent S1P-S1PR1 signaling modulator, Fingolimod (FTY720), in a Wistar rat apical periodontitis model effectively prevented bone lesions in vivo via downregulation of RANKL production, osteoclastogenesis, and bone resorption. Our data unveiled the regulatory role of SPHK1-S1PR1-RANKL axis in inflammatory bone lesions and proposed a potential therapeutic intervention by targeting this cell-signaling pathway to prevent bone loss. © 2018 American Society for Bone and Mineral Research.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
MISSION® esiRNA, targeting human S1PR1