Skip to Content
MilliporeSigma

Sulfate metabolites of 4-monochlorobiphenyl in whole poplar plants.

Environmental science & technology (2012-12-12)
Guangshu Zhai, Hans-Joachim Lehmler, Jerald L Schnoor
ABSTRACT

4-Monochlorobiphenyl (PCB3) has been proven to be transformed into hydroxylated metabolites of PCB3 (OH-PCB3s) in whole poplar plants in our previous work. However, hydroxylated metabolites of PCBs, including OH-PCB3s, as the substrates of sulfotransferases have not been studied in many organisms including plants in vivo. Poplar (Populus deltoides × nigra, DN34) was used to investigate the further metabolism from OH-PCB3s to PCB3 sulfates because it is a model plant and one that is frequently utilized in phytoremediation. Results showed poplar plants could metabolize PCB3 into PCB3 sulfates during 25 day exposures. Three sulfate metabolites, including 2'-PCB3 sulfate, 3'-PCB3 sulfate, and 4'-PCB3 sulfate, were identified in poplar roots and their concentrations increased in the roots from day 10 to day 25. The major products were 2'-PCB3 sulfate and 4'-PCB3 sulfate. However, the concentrations of PCB3 sulfates were much lower than those of OH-PCB3s in the roots, suggesting the sequential transformation of these hydroxylated PCB3 metabolites into PCB3 sulfates in whole poplars. In addition, 2'-PCB3 sulfate or 4'-PCB3 sulfate was also found in the bottom wood samples indicating some translocation or metabolism in woody tissue. Results suggested that OH-PCB3s were the substrates of sulfotransferases which catalyzed the formation of PCB3 sulfates in the metabolic pathway of PCB3.

MATERIALS
Product Number
Brand
Product Description

Supelco
PCB No 3, analytical standard