Skip to Content
Merck
  • Milk from dams fed an obesogenic diet combined with a high-fat/high-sugar diet induces long-term abnormal mammary gland development in the rabbit.

Milk from dams fed an obesogenic diet combined with a high-fat/high-sugar diet induces long-term abnormal mammary gland development in the rabbit.

Journal of animal science (2015-05-29)
C Hue-Beauvais, E Koch, P Chavatte-Palmer, L Galio, S Chat, M Letheule, D Rousseau-Ralliard, F Jaffrezic, D Laloë, E Aujean, F Révillion, V Lhotellier, A Gertler, E Devinoy, M Charlier
ABSTRACT

Alterations to the metabolic endocrine environment during early life are crucial to mammary gland development. Among these environmental parameters, the initial nutritional event after birth is the consumption of milk, which represents the first maternal support provided to mammalian newborns. Milk is a complex fluid that exerts effects far beyond its immediate nutritional value. The present study, therefore, aimed to determine the effect of the nutritional changes during the neonatal and prepubertal periods on the adult mammary phenotype. Newborn rabbits were suckled by dams fed a high-fat/high-sugar obesogenic (OD) or a control (CON) diet and then subsequently fed either the OD or CON diets from the onset of puberty and throughout early pregnancy. Mammary glands were collected during early pregnancy (Day 8 of pregnancy). Rabbits fed with OD milk and then subjected to an OD diet displayed an abnormal development of the mammary gland: the mammary ducts were markedly enlarged (P < 0.05) and filled with abundant secretory products. Moreover, the alveolar secretory structures were disorganized, with an abnormal aspect characterized by large lumina. Mammary epithelial cells contained numerous large lipid droplets and exhibited fingering of the apical membrane and abnormally enlarged intercellular spaces filled with casein micelles. Leptin has been shown to be involved in modulating several developmental processes. We therefore analyzed its expression in the mammary gland. Mammary leptin mRNA was strongly expressed in rabbits fed with OD milk and subjected to an OD diet by comparison with the CON rabbits. Leptin transcripts and protein were localized in the epithelial cells, indicating that the increase in leptin synthesis occurs in this compartment. Taken together, these findings suggest that early-life nutritional history, in particular through the milking period, can determine subsequent mammary gland development. Moreover, they highlight the potentially important regulatory role that leptin may play during critical early-life nutritional windows with respect to long-term growth and mammary function.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ammonium chloride, 99.998% trace metals basis
Sigma-Aldrich
Sodium azide, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Ammonium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Boron trifluoride-methanol solution, 50% w/w in methanol
Sigma-Aldrich
Ammonium chloride, 99.99% trace metals basis
Sigma-Aldrich
Sodium azide, purum p.a., ≥99.0% (T)
Sigma-Aldrich
Ammonium chloride, for molecular biology, suitable for cell culture, ≥99.5%
Sigma-Aldrich
Boron trifluoride methanol complex solution, 13-15% BF3 basis
Sigma-Aldrich
Leptin from rat, ≥97% (SDS-PAGE), recombinant, expressed in E. coli, lyophilized powder
Sigma-Aldrich
Sodium azide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Boron trifluoride-methanol solution, 14% in methanol
Sigma-Aldrich
Sodium azide, BioXtra
Sigma-Aldrich
Ammonium-14N chloride, 99.99 atom % 14N, 15N-depleted, 99% (CP)
Sigma-Aldrich
Hematoxylin
Sigma-Aldrich
Hematoxylin, certified by the Biological Stain Commission