Skip to Content
Merck
  • Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization.

Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization.

Applied and environmental microbiology (2000-12-01)
J K Magnuson, M F Romine, D R Burris, M T Kingsley
ABSTRACT

The anaerobic bacterium Dehalococcoides ethenogenes is the only known organism that can completely dechlorinate tetrachloroethene or trichloroethene (TCE) to ethene via dehalorespiration. One of two corrinoid-containing enzymes responsible for this pathway, TCE reductive dehalogenase (TCE-RDase) catalyzes the dechlorination of TCE to ethene. TCE-RDase dehalogenated 1,2-dichloroethane and 1, 2-dibromoethane to ethene at rates of 7.5 and 30 micromol/min/mg, respectively, similar to the rates for TCE, cis-dichloroethene (DCE), and 1,1-DCE. A variety of other haloalkanes and haloalkenes containing three to five carbon atoms were dehalogenated at lower rates. The gene encoding TCE-RDase, tceA, was cloned and sequenced via an inverse PCR approach. Sequence comparisons of tceA to proteins in the public databases revealed weak sequence similarity confined to the C-terminal region, which contains the eight-iron ferredoxin cluster binding motif, (CXXCXXCXXXCP)(2). Direct N-terminal sequencing of the mature enzyme indicated that the first 42 amino acids constitute a signal sequence containing the twin-arginine motif, RRXFXK, associated with the Sec-independent membrane translocation system. This information coupled with membrane localization studies indicated that TCE-RDase is located on the exterior of the cytoplasmic membrane. Like the case for the two other RDases that have been cloned and sequenced, a small open reading frame, tceB, is proposed to be involved with membrane association of TCE-RDase and is predicted to be cotranscribed with tceA.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1,1,2,2-Tetrabromoethane, 98%