- Data concordance from a comparison between filter binding and fluorescence polarization assay formats for identification of ROCK-II inhibitors.
Data concordance from a comparison between filter binding and fluorescence polarization assay formats for identification of ROCK-II inhibitors.
The Rho-associated coiled-coil-containing protein serine/threonine kinases ROCK-I and ROCK-II are thought to play a major role in cytoskeletal dynamics by serving as downstream effectors of the Rho/Rac family of cytokine- and growth factor-activated small GTPases. As such, the ROCK family members are attractive intervention targets for a variety of pathologies, including cancer and cardiovascular disease. The authors developed a high-throughput screen to identify ROCK-II inhibitors and report results from a direct comparison of 2 screening campaigns for ROCK-II inhibitors using fluorescence polarization (FP) and filter binding (FB). Screening protocols to identify inhibitors of ROCK-II were developed in FB and FP formats under similar assay and kinetic conditions. A 30,000-member compound library was screened using FB ((33)P) and FP detection systems, and compounds that were active in either assay were retested in 5-point curve confirmation assays. Analysis of these data showed an approximate 95% agreement of compounds identified as active in both assay formats. Also, compound potency determinations from FB and FP had a high degree of correlation and were considered equivalent. These data suggest that the assay methodology has little impact on the quality and productivity of the screen, provided that the assays are developed to standardize kinetic conditions.