跳轉至內容
Merck
首頁細胞訊號脂多醣體

脂多醣體

Glycobiology Analysis Manual, 2nd Edition

脂多醣 (LPS) 是革蘭氏陰性細菌外膜的主要成分。脂多糖定位于膜的外层,在非囊膜菌株中,脂多糖暴露于细胞表面。

結構

完整的細菌脂多醣是分子質量為 10-20 kDa 的大分子,由三種結構成分組成
(圖 1):

  • 疏水性脂質部分,即脂質A,負責分子的毒性特性,
細菌脂多醣的一般結構

圖 1.細菌脂多醣的一般結構。有關各部分的詳細說明,請參閱正文。縮寫:KDO: 3-deoxy-α-D-mannooctulosonic acid; Hep: Heptulose (ketoheptose); NGa:半乳糖胺;NGc:葡萄糖胺。

脂質 A 核心是由β-葡萄糖胺-(1→6)-葡萄糖胺-1-磷酸基與脂肪酸酯兩種碳水化合物所組成。酰基鏈的長度和數量在不同的細菌品種之間可能會有所不同,但在同一品種內則相對保守。內層多糖核心通常含有 1 到 4 個分子的 KDO (3-deoxy-α-D-manno-ctulosonic acid,3-脫氧-α-D-甘露-辛酮索酸) 附著在二糖核心上。KDO 與脂多醣有特殊關聯,而具有生物活性的脂質 A 被認為至少需要一個 KDO 殘基才能讓細菌存活。2 然而,一株缺乏 KDO 的 大腸桿菌 K-12 抑制株證明,KDO 對於存活率的要求並非絕對。3

含有 KDO 的內核也會被七糖 (ketoheptose) 單糖所修飾,其中最常見的是 L-甘油-α-D-甘露庚吡喃糖。內層核心聚糖殘基通常會磷酸化或以含磷酸基團 (例如焦磷酸或 2-aminoethylphosphate) 進行修飾。

脂多醣的磷酸基團會增加細胞膜的整體負電荷,並有助於穩定結構。

脂多醣的外核心含有較常見的己糖,包括葡萄糖、半乳糖和 N-乙酰葡萄糖胺,在結構上比內核心更為多樣化。

O-抗原是一種重複的寡糖單位,通常由 2 到 6 種糖組成。O-antigen 是脂多醣中區分細菌的主要結構成分。獨特的 O-antigen 結構已被用來識別和指定大腸桿菌、腸沙門氏菌和霍亂弧菌的血清群。4 Lipopolysaccharides from rough mutant strains of E.

脂多糖的核心部分和脂質A部分在結構上可能有一些變異,而O-抗原則有高度的結構變異以及重複單位數量的變異。這些差異造成 LPS 製劑中存在大量的異質性。由於 LPS 是異質的,而且傾向於形成大小不一的聚集體,因此有報告指出這些聚集體的"分子質量"範圍為 1-4 百萬道尔顿或更大。5

功能與應用

在革蘭氏陰性細菌中,膜脂多醣保護細菌免受膽鹽和親脂肪抗生素的作用。6

脂多醣是一種熱穩定的內毒素,長久以來被認為是人類敗血性休克(敗血症)的關鍵因素1,7 更廣泛而言,是誘發正常哺乳類細胞產生強烈免疫反應的關鍵因素。脂質 A 分子已被確定為脂多醣內毒素活性的關鍵。Galanos 等人的研究證明了這一點、發現合成和天然來源的 大腸桿菌 脂質 A 製劑具有相同的生物活性結果,包括內毒素活性。8 脂多糖的活性受體已被確認為 CD14/TLR4/MD2 受體複合體,它會促進促炎細胞因子的分泌,包括腫瘤壞死因子-α 和白介素-1。9 雖然脂質 A 成分主要負責啟動免疫反應,但 Salmonella enterica LPS 的多醣成分也是 NF-κB 啟動的必要成分。10

脂多糖製劑已被用於闡明 LPS 結構、11 新陳代謝、12 免疫學、13 生理学、14 毒性、15 和生物合成。16 它們也被用來誘導促進生長因子(如白細胞介素)的合成和分泌。17,18 由於脂多醣與敗血病有關,因此脂多醣已被研究來找出可能的抗體目標和 LPS 生物合成的抑制劑。19,20

Extraction and Purification

Lipopolysaccharides can be prepared by extraction from TCA,21 苯酚,22,23 或苯酚-氯仿-石油醚(用於粗糙菌株)中提取。24 TCA提取的脂多糖與苯酚提取的脂多糖在結構上相似,具有相似的電泳圖和內毒性。主要差異在於萃取後殘留的核酸和蛋白質污染物的數量。TCA 萃取物含有 ~2% 的 RNA 和 ~10% 的變性蛋白質,而苯酚萃取物則含有高達 60% 的 RNA 和 <1%的蛋白質。使用凝膠過濾層析技術進行後續純化,可去除酚萃取物 LPS 中的大部分蛋白質,但會得到含有 10-20% 核酸的製備物。使用離子交換層析出法進一步純化,可得到含有<1%蛋白質和<1% RNA的脂多醣產品。

材料
Loading

參考資料

1.
Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zähringer U, Seydel U, Di Padova F, et al. 1994. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB j.. 8(2):217-225. https://doi.org/10.1096/fasebj.8.2.8119492
2.
HELANDER IM, LINDNER B, BRADE H, ALTMANN K, LINDBERG AA, RIETSCHEL ET, ZAHRINGER U. 1988. Chemical structure of the lipopolysaccharide of Haemophilus influenzae strain I-69 Rd-/b+. Description of a novel deep-rough chemotype. Eur J Biochem. 177(3):483-492. https://doi.org/10.1111/j.1432-1033.1988.tb14398.x
3.
Meredith TC, Aggarwal P, Mamat U, Lindner B, Woodard RW. 2006. Redefining the Requisite Lipopolysaccharide Structure inEscherichia coli. ACS Chem. Biol.. 1(1):33-42. https://doi.org/10.1021/cb0500015
4.
Samuel G, Reeves P. 2003. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydrate Research. 338(23):2503-2519. https://doi.org/10.1016/j.carres.2003.07.009
5.
JANN B, RESKE K, JANN K. 1975. Heterogeneity of Lipopolysaccharides. Analysis of Polysaccharide Chain Lengths by Sodium Dodecylsulfate-Polyacrylamide Gel Electrophoresis. Eur J Biochem. 60(1):239-246. https://doi.org/10.1111/j.1432-1033.1975.tb20996.x
6.
Mayer H, Tharanathan R, Weckesser J. 1985. 6 Analysis of Lipopolysaccharides of Gram-Negative Bacteria.157-207. https://doi.org/10.1016/s0580-9517(08)70475-6
7.
GALANOS C, LUDERITZ O, RIETSCHEL ET, WESTPHAL O, BRADE H, BRADE L, FREUDENBERG M, SCHADE U, IMOTO M, YOSHIMURA H, et al. 1985. Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. Eur J Biochem. 148(1):1-5. https://doi.org/10.1111/j.1432-1033.1985.tb08798.x
8.
Palsson-McDermott EM, O'Neill LAJ. 2004. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology. 113(2):153-162. https://doi.org/10.1111/j.1365-2567.2004.01976.x
9.
Muroi M, Tanamoto K. 2002. The Polysaccharide Portion Plays an Indispensable Role in Salmonella Lipopolysaccharide-Induced Activation of NF-?B through Human Toll-Like Receptor 4. IAI. 70(11):6043-6047. https://doi.org/10.1128/iai.70.11.6043-6047.2002
10.
Strain SM, Fesik SW, Armitage IM. 1983. Characterization of lipopolysaccharide from a heptoseless mutant of Escherichia coli by carbon 13 nuclear magnetic resonance.. Journal of Biological Chemistry. 258(5):2906-2910. https://doi.org/10.1016/s0021-9258(18)32804-7
11.
Munford RS, Andersen JM, Dietschy JM. 1981. Sites of tissue binding and uptake in vivo of bacterial lipopolysaccharide-high density lipoprotein complexes: studies in the rat and squirrel monkey.. J. Clin. Invest.. 68(6):1503-1513. https://doi.org/10.1172/jci110404
12.
Morrison DC, Rudbach JA. 1981. Endotoxin-Cell-Membrane Interactions Leading to Transmembrane Signaling.187-218. https://doi.org/10.1007/978-1-4684-3917-5_6
13.
Galanos C. 1977. International Review of Biochemistry. Biochemistry of Lipids III Vol. 14, 2309. Baltimore, MD USA: University Park Press.
14.
Kurtz HJ, Quast J. 1982. Effects of continuous intravenous infusion of Escherichia coli endotoxin into swine. 43(2). Am J Vet Res: 262-268.
15.
Rick PD, Young DA. 1982. Isolation and characterization of a temperature-sensitive lethal mutant of Salmonella typhimurium that is conditionally defective in 3-deoxy-D-manno-octulosonate-8-phosphate synthesis.. 150(2):447-455. https://doi.org/10.1128/jb.150.2.447-455.1982
16.
Skelly RR, Munkenbeck P, Morrison DC. 1979. Stimulation of T-independent antibody responses by hapten-lipopolysaccharides without repeating polymeric structure.. 23(2):287-293. https://doi.org/10.1128/iai.23.2.287-293.1979
17.
Lang CH, Silvis C, Deshpande N, Nystrom G, Frost RA. 2003. Endotoxin Stimulates In Vivo Expression of Inflammatory Cytokines Tumor Necrosis Factor Alpha, Interleukin-1??, -6, and High-Mobility-Group Protein-1 in Skeletal Muscle. Shock. 19(6):538-546. https://doi.org/10.1097/01.shk.0000055237.25446.80
18.
Müller-Loennies S, Brade L, MacKenzie C, Di Padova FE, Brade H. 2003. Identification of a Cross-reactive Epitope Widely Present in Lipopolysaccharide from Enterobacteria and Recognized by the Cross-protective Monoclonal Antibody WN1 222-5. Journal of Biological Chemistry. 278(28):25618-25627. https://doi.org/10.1074/jbc.m302904200

19.
Staub A. Bacterial lipido-protinopolysaccharides ('O' somatic antigens) extraction with trichloroacetic acid in Methods in Carbohydrate Chem. Vol. 5, 92-93. Hoboken, NJ USA: John Wiley & Sons, Inc..
20.
Westphal O, Jann K. 1965. Bacterial lipopolysaccharides extraction with phenolwater and further applications of the procedure in Methods in Carbohydrate Chem. Vol. 5, 92‑93. Hoboken, NJ USA: John Wiley & Sons, Inc.
21.
Leive L, Morrison DC. 1972. [23] Isolation of lipopolysaccharides from bacteria.254-262. https://doi.org/10.1016/0076-6879(72)28025-9
22.
Galanos C, Luderitz O, Westphal O. 1969. A New Method for the Extraction of R Lipopolysaccharides. Eur J Biochem. 9(2):245-249. https://doi.org/10.1111/j.1432-1033.1969.tb00601.x
登入以繼續

若要繼續閱讀,請登入或建立帳戶。

還沒有帳戶?