乳癌是婦女第二大常見癌症,也是癌症致死的主要原因之一。 它起初是局部腫瘤,但可轉移至遠處部位並導致死亡。乳癌具有異质性,為診斷和治療帶來挑戰。特別具挑戰性的是所謂的三陰性乳癌,也就是腫瘤不表達與乳癌生長最密切相關的三種受體-雌激素、孕激素和 HER-2/neu,並且對任何荷爾蒙療法都無反應的乳癌1。
乳癌的類型
乳腺管癌和乳腺小葉癌是乳癌的兩種類型,因其起源組織而得名。根據受體的存在,可分為荷爾蒙受體陽性、HER2 陽性和三重陰性乳癌。
小分子化合物/單株抗體
小分子化合物和抗體可用於靶向癌細胞,阻斷腫瘤生長和惡化。根據腫瘤的階段和類型,有多種小分子化合物和抗體可以針對乳癌。
乳癌靶向藥物的種類包括:
- 單株抗體 (Trastuzumab, Pertuzumab)
- 酪氨酸激酶抑制劑 (拉帕替尼) Palbociclib, Ribociclib)
- mTOR抑制劑 (Everolimus) 。
此外,研究聚 ADP 核糖聚合酶 (PARP) 抑制劑正在針對三重陰性乳癌3進行研究。
應用
癌症細胞系是癌症研究的基礎。由於它們易於使用且成本效益高,因此已被廣泛用於無數的研究中。根據細胞株的特性和實驗需要,細胞株可以用於一種或多種應用。
ECACC 乳癌細胞株 |
---|
參考資料
1.
Hutchinson L. 2010. Challenges, controversies, breakthroughs. Nat Rev Clin Oncol. 7(12):669-670. https://doi.org/10.1038/nrclinonc.2010.192
2.
3.
Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha N. 2015. Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol. 172(17):4228-4237. https://doi.org/10.1111/bph.13211
4.
Willmann L, Schlimpert M, Halbach S, Erbes T, Stickeler E, Kammerer B. 2015. Metabolic profiling of breast cancer: Differences in central metabolism between subtypes of breast cancer cell lines. Journal of Chromatography B. 100095-104. https://doi.org/10.1016/j.jchromb.2015.07.021
5.
Larsen SS, Heiberg I, Lykkesfeldt AE. Anti-oestrogen resistant human breast cancer cell lines are more sensitive towards treatment with the vitamin D analogue EB1089 than parent MCF-7 cells. Br J Cancer. 84(5):686-690. https://doi.org/10.1054/bjoc.2000.1646
6.
Lautenschlaeger T, Perry J, Peereboom D, Li B, Ibrahim A, Huebner A, Meng W, White J, Chakravarti A. 2013. In vitro study of combined cilengitide and radiation treatment in breast cancer cell lines. Radiat Oncol. 8(1): https://doi.org/10.1186/1748-717x-8-246
7.
Rasmussen LM, Zaveri NT, Stenvang J, Peters RH, Lykkesfeldt AE. 2007. A novel dual-target steroid sulfatase inhibitor and antiestrogen: SR 16157, a promising agent for the therapy of breast cancer. Breast Cancer Res Treat. 106(2):191-203. https://doi.org/10.1007/s10549-007-9494-y
8.
Abdel-Fatah TM, Middleton FK, Arora A, Agarwal D, Chen T, Moseley PM, Perry C, Doherty R, Chan S, Green AR, et al. 2015. Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer. 9(3):569-585. https://doi.org/10.1016/j.molonc.2014.10.013
9.
Dadras P, Atyabi F, Irani S, Ma'mani L, Foroumadi A, Mirzaie ZH, Ebrahimi M, Dinarvand R. 2017. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. European Journal of Pharmaceutical Sciences. 9747-54. https://doi.org/10.1016/j.ejps.2016.11.005
10.
Jia Z, Liu Y, Cui S. 2014. Adiponectin Induces Breast Cancer Cell Migration and Growth Factor Expression. Cell Biochem Biophys. 70(2):1239-1245. https://doi.org/10.1007/s12013-014-0047-9
11.
Ma W, Zhu M, Zhang D, Yang L, Yang T, Li X, Zhang Y. 2017. Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2. Phytomedicine. 2545-51. https://doi.org/10.1016/j.phymed.2016.12.013
12.
Manabe Y, Toda S, Miyazaki K, Sugihara H. 2003. Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions. J. Pathol.. 201(2):221-228. https://doi.org/10.1002/path.1430
13.
Lebret SC, Newgreen DF, Thompson EW, Ackland ML. 2007. Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors. Breast Cancer Res. 9(1): https://doi.org/10.1186/bcr1656
14.
Zheng S, Guo G, Zhai Q, Zou Z, Zhang W. 2013. Effects of miR-155 Antisense Oligonucleotide on Breast Carcinoma Cell Line MDA-MB-157 and Implanted Tumors. Asian Pacific Journal of Cancer Prevention. 14(4):2361-2366. https://doi.org/10.7314/apjcp.2013.14.4.2361
登入以繼續
若要繼續閱讀,請登入或建立帳戶。
還沒有帳戶?