跳轉至內容
Merck
  • Non-canonical Hedgehog signaling regulates spinal cord and muscle regeneration in Xenopus laevis larvae.

Non-canonical Hedgehog signaling regulates spinal cord and muscle regeneration in Xenopus laevis larvae.

eLife (2021-05-07)
Andrew M Hamilton, Olga A Balashova, Laura N Borodinsky
摘要

Inducing regeneration in injured spinal cord represents one of modern medicine's greatest challenges. Research from a variety of model organisms indicates that Hedgehog (Hh) signaling may be a useful target to drive regeneration. However, the mechanisms of Hh signaling-mediated tissue regeneration remain unclear. Here, we examined Hh signaling during post-amputation tail regeneration in Xenopus laevis larvae. We found that while Smoothened (Smo) activity is essential for proper spinal cord and skeletal muscle regeneration, transcriptional activity of the canonical Hh effector Gli is repressed immediately following amputation, and inhibition of Gli1/2 expression or transcriptional activity has minimal effects on regeneration. In contrast, we demonstrate that protein kinase A is necessary for regeneration of both muscle and spinal cord, in concert with and independent of Smo, respectively, and that its downstream effector CREB is activated in spinal cord following amputation in a Smo-dependent manner. Our findings indicate that non-canonical mechanisms of Hh signaling are necessary for spinal cord and muscle regeneration.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
抗磷酸组蛋白H3(Ser10)抗体,有丝分裂标记, Upstate®, from rabbit
Sigma-Aldrich
平滑激动剂,SAG, A cell-permeable Smoothened Agonist, SAG, CAS 364590-63-6, modulates the coupling of Smo with its downstream effector by interacting with the Smo heptahelical domain (KD = 59 nM).
Sigma-Aldrich
山羊抗小鼠IgG抗体,HRP偶联物, Upstate®, from goat
Sigma-Aldrich
环巴胺 水合物, ≥98% (HPLC)