跳轉至內容
Merck
  • A feedforward circuit shaped by ECT2 and USP7 contributes to breast carcinogenesis.

A feedforward circuit shaped by ECT2 and USP7 contributes to breast carcinogenesis.

Theranostics (2020-09-16)
Qi Zhang, Cheng Cao, Wenchen Gong, Kaiwen Bao, Qian Wang, Yuejiao Wang, Liyuan Bi, Shuai Ma, Jiao Zhao, Ling Liu, Shanshan Tian, Kai Zhang, Jie Yang, Zhi Yao, Nan Song, Lei Shi
摘要

Rationale: A number of guanine nucleotide exchange factors (GEFs) including epithelial cell transforming factor ECT2 are believed to drive carcinogenesis through activating distinct oncogenic GTPases. Yet, whether GEF-independent activity of ECT2 also plays a role in tumorigenesis remains unclear. Methods: Immunohistochemical (IHC) staining, colony formation and xenograft assays were used to examine the role of ECT2 in breast carcinogenesis. Co-immunoprecipitation, immunofluorescent stainings, in vivo deubiquitination and in vitro deubiquitination experiments were performed to examine the physical and functional interaction between ECT2 and ubiquitin-specific protease USP7. High-throughput RNA sequencing, quantitative reverse transcription-PCR and Western blotting were employed to investigate the biological significance of the interplay between ECT2 and USP7. Results: We report that ECT2 plays a tumor-promoting role in breast cancer, and GEF activity-deficient ECT2 is able to alleviate ECT2 depletion associated growth defects in breast cancer cells. Mechanistically, we demonstrated that ECT2 physically interacts with ubiquitin-specific protease USP7 and functionally facilitates USP7 intermolecular self-association, -deubiquitination and -stabilization in a GEF activity-independent manner. USP7 in turn, deubiquitinates and stabilizes ECT2, resulting in a feedforward regulatory circuit that ultimately sustains the expression of oncogenic protein MDM2. Conclusion: Our study uncovers a GEF-independent role of ECT2 in promoting survival of breast cancer cells, provides a molecular insight for the reciprocal regulation of ECT2 and USP7, and supports the pursuit of ECT2/USP7 as potential targets for breast cancer intervention.

材料
產品編號
品牌
產品描述

Millipore
抗-FLAG® M2亲和凝胶, purified immunoglobulin, buffered aqueous glycerol solution
Sigma-Aldrich
嘌呤霉素 二盐酸盐 来源于白色链球菌, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
多西环素 单盐酸半乙醇半水合物
Sigma-Aldrich
单克隆抗-FLAG® M2 小鼠抗, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
3X FLAG® 肽, lyophilized powder
Sigma-Aldrich
新霉素 溶液, with 10 mg/mL neomycin in 0.9% NaCl, 0.1 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
抗 β-肌动蛋白抗体,小鼠单克隆, clone AC-15, purified from hybridoma cell culture
Sigma-Aldrich
杀稻瘟素S 盐酸盐
BRAND® 96 孔微孔板,U 形底, round bottom, non-sterile
Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)
Sigma-Aldrich
MG-132(R), ≥95% (HPLC)
Sigma-Aldrich
抗-ECT2抗体, from rabbit, purified by affinity chromatography