Skip to Content
Merck
  • Inhibition of TRPC3 downregulates airway hyperresponsiveness, remodeling of OVA-sensitized mouse.

Inhibition of TRPC3 downregulates airway hyperresponsiveness, remodeling of OVA-sensitized mouse.

Biochemical and biophysical research communications (2016-12-31)
Lingwei Wang, Jie Li, Jian Zhang, Qi He, Xuanwen Weng, Yanmei Huang, Minjie Guan, Chen Qiu
ABSTRACT

Airway hyperresponsiveness (AHR), airway remodeling and inflammation are the fundamental pathological alterations that occur in asthma. Transient receptor potential canonical 3 (TRPC3) has been implicated in diverse functions of airway smooth muscle cells (ASMCs) in asthma. However, the underlying mechanisms remain incompletely understood. We investigated the mRNA and protein expression of TRPC3 in ASMCs from normal and OVA-sensitized mouse. And the effects of inhibition or knockdown of TRPC3 with Ethyl-1- (4- (2,3,3-trichloroacrylamide) phenyl) -5 - (trifluoromethyl) -1H -pyrazole -4-carboxylate (Pyr3) and lentiviral shRNA on OVA-sensitized mouse AHR, airway remodeling, circulating inflammatory cytokines, cell proliferation and migration. We found that TRPC3 mRNA and protein expression levels were significantly increased in ASMCs from OVA-sensitized mouse. Inhibiting TRPC3 with continuous subcutaneous administration of Pyr3 decreased enhanced pause (Penh) of OVA-sensitized mouse. Meanwhile, both Pyr3 and lentiviral shRNA treatment of ASMCs in OVA-sensitized mouse significantly decreased their proliferation and migration. These results suggest that TRPC3 plays a critical role in asthma and represents a promising new target for asthma treatment.