Skip to Content
Merck

Palladium-catalysed hydroxylation and alkoxylation.

Chemical Society reviews (2011-06-07)
Stephan Enthaler, Anna Company
ABSTRACT

The formation of oxygen-carbon bonds is one of the fundamental transformations in organic synthesis. In this regard the application of palladium-based catalysts has been extensively studied during recent years. Nowadays it is an established methodology and the success has been proven in manifold synthetic procedures. This tutorial review summarizes the advances on palladium-catalysed C-O bond formation, means hydroxylation and alkoxylation reactions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Palladium, foil, thickness 0.5 mm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, foil, thickness 0.25 mm, 99.98% trace metals basis
Sigma-Aldrich
Palladium, foil, thickness 1.0 mm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, powder or granules, 99.99% trace metals basis
Sigma-Aldrich
Palladium, powder, <1 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Palladium, wire, diam. 1.0 mm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, foil, thickness 0.025 mm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, sponge, 99.9% trace metals basis
Sigma-Aldrich
Palladium, evaporation slug, diam. × L 0.6 cm × 0.6 cm, 99.95% trace metals basis
Sigma-Aldrich
Palladium, wire, diam. 0.5 mm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, powder, <75 μm, 99.9% trace metals basis
Sigma-Aldrich
Palladium, nanopowder, <25 nm particle size (TEM), ≥99.5%
Sigma-Aldrich
Palladium, powder, 99.995% trace metals basis