Skip to Content
Merck
  • Effects of Tailored Surface Chemistry on Desorption Electrospray Ionization Mass Spectrometry: a Surface-Analytical Study by XPS and AFM.

Effects of Tailored Surface Chemistry on Desorption Electrospray Ionization Mass Spectrometry: a Surface-Analytical Study by XPS and AFM.

Journal of the American Society for Mass Spectrometry (2015-04-22)
Andrea Penna, Maria Careri, Nicholas D Spencer, Antonella Rossi
ABSTRACT

Since it was proposed for the first time, desorption electrospray ionization-mass spectrometry (DESI-MS) has been evaluated for applicability in numerous areas. Elucidations of the ionization mechanisms and the subsequent formation of isolated gas-phase ions have been proposed so far. In this context, the role of both surface and pneumatic effects on ion-formation yield has recently been investigated. Nevertheless, the effect of the surface chemistry has not yet been completely understood. Functionalized glass surfaces have been prepared, in order to tailor surface performance for ion formation. Three substrates were functionalized by depositing three different silanes [3-mercaptopropyltriethoxysilane (MTES), octyltriethoxysilane (OTES), and 1H,1H,2H,2H-perfluorooctyltriethoxy-silane (FOTES)] from toluene solution onto standard glass slides. Surface characterization was carried out by contact-angle measurements, tapping-mode atomic force microscopy, and X-ray photoelectron spectroscopy. Morphologically homogeneous and thickness-controlled films in the nm range were obtained, with surface free energies lying between 15 and 70 mJ/m(2). These results are discussed, together with those of DESI-MS on low-molecular-weight compounds such as melamine, tetracycline, and lincomycin, also taking into account the effects of the sprayer potential and its correlation with surface wettability. The results demonstrate that ion-formation efficiency is affected by surface wettability, and this was demonstrated operating above and below the onset of the electrospray.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Toluene, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetonitrile, for chromatography
Sigma-Aldrich
Toluene, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetonitrile, SAJ first grade, ≥99.0%
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Acetonitrile, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetonitrile, ≥99.8%, for residue analysis, JIS 300
Sigma-Aldrich
Toluene, JIS 300, for residue analysis, ≥99.8%
Sigma-Aldrich
Ethanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
Toluene, JIS 1000, for residue analysis, ≥99.8%
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for HPLC
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Acetonitrile, for residue analysis, JIS 5000
Sigma-Aldrich
Toluene, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, for residue analysis
Supelco
Toluene, HPLC grade, 99.8%
Supelco
Acetonitrile, HPLC grade, ≥99.93%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Sigma-Aldrich
(3-Mercaptopropyl)triethoxysilane, ≥80% (GC), technical
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent