Skip to Content
Merck

CRISPR-Cas9 knockin mice for genome editing and cancer modeling.

Cell (2014-09-30)
Randall J Platt, Sidi Chen, Yang Zhou, Michael J Yim, Lukasz Swiech, Hannah R Kempton, James E Dahlman, Oren Parnas, Thomas M Eisenhaure, Marko Jovanovic, Daniel B Graham, Siddharth Jhunjhunwala, Matthias Heidenreich, Ramnik J Xavier, Robert Langer, Daniel G Anderson, Nir Hacohen, Aviv Regev, Guoping Feng, Phillip A Sharp, Feng Zhang
ABSTRACT

CRISPR-Cas9 is a versatile genome editing technology for studying the functions of genetic elements. To broadly enable the application of Cas9 in vivo, we established a Cre-dependent Cas9 knockin mouse. We demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells. Using these mice, we simultaneously modeled the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma. Delivery of a single AAV vector in the lung generated loss-of-function mutations in p53 and Lkb1, as well as homology-directed repair-mediated Kras(G12D) mutations, leading to macroscopic tumors of adenocarcinoma pathology. Together, these results suggest that Cas9 mice empower a wide range of biological and disease modeling applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301, clone JBW301, Upstate®, from mouse
SKU
Pack Size
Availability
Price
Quantity
Sigma-Aldrich
Monoclonal Anti-Parvalbumin antibody produced in mouse, clone PARV-19, ascites fluid
SKU
Pack Size
Availability
Price
Quantity
Sigma-Aldrich
Anti-Prosurfactant Protein C (proSP-C) Antibody, serum, Chemicon®
SKU
Pack Size
Availability
Price
Quantity