Skip to Content
Merck
  • Controlled Assembly of Fibronectin Nanofibrils Triggered by Random Copolymer Chemistry.

Controlled Assembly of Fibronectin Nanofibrils Triggered by Random Copolymer Chemistry.

ACS applied materials & interfaces (2015-08-01)
Hayk Mnatsakanyan, Patricia Rico, Eleni Grigoriou, Aarón Maturana Candelas, Aleixandre Rodrigo-Navarro, Manuel Salmeron-Sanchez, Roser Sabater i Serra
ABSTRACT

Fibronectin fibrillogenesis is the physiological process by which cells elaborate a fibrous FN matrix. Poly(ethyl acrylate), PEA, has been described to induce a similar process upon simple adsorption of fibronectin (FN) from a protein solution-in the absence of cells-leading to the so-called material-driven fibronectin fibrillogenesis. Poly(methyl acrylate), PMA, is a polymer with very similar chemistry to PEA, on which FN is adsorbed, keeping the globular conformation of the protein in solution. We have used radical polymerization to synthesize copolymers with controlled EA/MA ratio, seeking to modulate the degree of FN fibrillogenesis. The physicochemical properties of the system were studied using dynamic-mechanical analysis, differential scanning calorimetry, and water contact angle. Both the degree of FN fibrillogenesis and the availability of the integrin binding region of FN directly depend on the percentage of EA in the copolymer, whereas the same total amount of FN was adsorbed regardless the EA/MA ratio. Cell morphology adhesion and differentiation of murine C2C12 were shown to depend on the degree of FN fibrillogenesis previously attained on the material surface. Myogenic differentiation was enhanced on the copolymers with higher EA content, i.e. more interconnected FN fibrils.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
SAFC
HEPES
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O
Sigma-Aldrich
Benzoin, 98%
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Ethyl acrylate, contains 10-20 ppm MEHQ as inhibitor, 99%
Sigma-Aldrich
Benzoin, purified by sublimation, ≥99.5%
Sigma-Aldrich
Methyl acrylate, 99%, contains ≤100 ppm monomethyl ether hydroquinone as inhibitor
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
SAFC
HEPES
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Ethyl acrylate, ≥99.5%, stabilized
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
DL-Tyrosine, 99%
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)