Skip to Content
Merck
  • Ionization suppression effects with condensed phase membrane introduction mass spectrometry: methods to increase the linear dynamic range and sensitivity.

Ionization suppression effects with condensed phase membrane introduction mass spectrometry: methods to increase the linear dynamic range and sensitivity.

Journal of mass spectrometry : JMS (2015-03-25)
Kyle D Duncan, Gregory W Vandergrift, Erik T Krogh, Chris G Gill
ABSTRACT

Condensed phase membrane introduction mass spectrometry (CP-MIMS) is an online analytical method that allows for the direct, trace level measurement of a wide range of analytes in complex samples. The technique employs a semi-permeable membrane that transfers analytes from a sample into a flowing acceptor solvent, which is directly infused to an atmospheric pressure ionization source, such as electrospray or atmospheric pressure chemical ionization. While CP-MIMS and variants of the technique have been in the literature for nearly a decade, much of the work has focused on instrument development. Few studies have thoroughly addressed quantitative methods related to detection limits, ionization suppression, or linear dynamic range. We examine ionization suppression in the direct rapid quantitation of analytes by CP-MIMS and introduce several analytical strategies to mitigate these effects, including the novel implementation of a continuously infused internal standard in the acceptor phase solvent, and modulation of acceptor phase flow rate. Several representative analytes were used to evaluate this approach with spiked, complex sample matrices, including primary wastewater effluent and artificial urine. Also reported are improved measured detection limits in the low part-per-trillion range, using a 'stopped-flow' acceptor mode.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Supelco
Gemfibrozil, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Uric acid, ≥99%, crystalline
Sigma-Aldrich
Uric acid, BioXtra, ≥99% (HPLC)
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Supelco
Hexane, analytical standard
Sigma-Aldrich
Hexane, suitable for HPLC, ≥95%
Sigma-Aldrich
Gemfibrozil
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Hexane, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Gemfibrozil for system suitability, European Pharmacopoeia (EP) Reference Standard
Gemfibrozil, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Hexane, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Aniline-2,3,4,5,6-d5, 98 atom % D
Sigma-Aldrich
Aniline, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)