Skip to Content
Merck
  • Heteroaryl cross-coupling as an entry toward the synthesis of lavendamycin analogues: a model study.

Heteroaryl cross-coupling as an entry toward the synthesis of lavendamycin analogues: a model study.

The Journal of organic chemistry (2009-12-19)
Guido Verniest, Xingpo Wang, Norbert De Kimpe, Albert Padwa
ABSTRACT

ABC analogues of the antitumor antibiotic lavendamycin, which contain the key metal chelation site and redox-active quinone unit essential for biological activity, were prepared via the palladium(0)-catalyzed cross-coupling reaction of various 2-haloheteroaromatics with 2-stannylated pyridines and quinolines. Using the Stille reaction, 2-bromo substituted quinolines and 1-bromoisoquinolines were found to undergo efficient coupling with 2-pyridinylstannanes to provide unsymmetrical heterobiaryl derivatives. While the Stille reaction using the reverse coupling partners (i.e., 2-quinolinylstannanes and haloheteroaromatics) had not received much attention in the literature, we found that this alternative coupling reaction efficiently provided several new heterobiaryl derivatives. The gold-catalyzed intramolecular cycloisomerization of N-(prop-2-ynyl)-1H-indole-2-carboxamide smoothly afforded a beta-carbolinone derivative that was subsequently used for a Pd(0)-catalyzed cross-coupling directed toward the synthesis of lavendamycin analogues.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Streptonigrin from Streptomyces flocculus, ≥98%