Skip to Content
Merck
  • Spiroethers of German chamomile inhibit production of aflatoxin G and trichothecene mycotoxin by inhibiting cytochrome P450 monooxygenases involved in their biosynthesis.

Spiroethers of German chamomile inhibit production of aflatoxin G and trichothecene mycotoxin by inhibiting cytochrome P450 monooxygenases involved in their biosynthesis.

FEMS microbiology letters (2008-05-22)
Tomoya Yoshinari, Atsushi Yaguchi, Naoko Takahashi-Ando, Makoto Kimura, Haruo Takahashi, Takashi Nakajima, Yoshiko Sugita-Konishi, Hiromichi Nagasawa, Shohei Sakuda
ABSTRACT

The essential oil of German chamomile showed specific inhibition toward aflatoxin G(1) (AFG(1)) production, and (E)- and (Z)-spiroethers were isolated as the active compounds from the oil. The (E)- and (Z)-spiroethers inhibited AFG(1) production of Aspergillus parasiticus with inhibitory concentration 50% (IC(50)) values of 2.8 and 20.8 microM, respectively, without inhibiting fungal growth. Results of an O-methylsterigmatocystin (OMST) conversion study indicated that the spiroethers specifically inhibited the OMST to AFG(1) pathway. A cytochrome P450 monooxygenase, CYPA, is known as an essential enzyme for this pathway. Because CYPA has homology with TRI4, a key enzyme catalyzing early steps in the biosynthesis of trichothecenes, the inhibitory actions of the two spiroethers against TRI4 reactions and 3-acetyldeoxynivalenol (3-ADON) production were tested. (E)- and (Z)-spiroethers inhibited the enzymatic activity of TRI4 dose-dependently and interfered with 3-ADON production by Fusarium graminearum, with IC(50) values of 27.1 and 103 microM, respectively. Our results suggest that the spiroethers inhibited AFG(1) and 3-ADON production by inhibiting CYPA and TRI4, respectively.

MATERIALS
Product Number
Brand
Product Description

Supelco
3-Acetyldeoxynivalenol solution, ~100 μg/mL in acetonitrile, analytical standard
Supelco
3-Acetyldeoxynivalenol
Sigma-Aldrich
3-Acetyldeoxynivalenol, from Fusarium roseum