Skip to Content
Merck

Differential expression of serum proteins in multiple myeloma.

Experimental and therapeutic medicine (2019-01-18)
Tian-Ze Ma, Zhe Piao, Sheng-Yu Jin, Yong-Geun Kwak
ABSTRACT

The exact cause instigating multiple myeloma (MM) has not been fully elucidated, and the disease has a median survival of 6 months without any treatment. To identify potential biomarkers of MM, serum proteins reflecting alteration in their proteomes were analyzed in 6 patients with MM compared with 6 healthy controls using two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of flight mass spectrometry. The most notable differentially expressed proteins were validated by immunoblotting and changes in mRNA expression were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 11 differentially expressed protein spots were found. The expression levels of 7 proteins [Immunoglobulin heavy constant µ; proto-oncogene diffuse B-cell lymphoma (DBL2); 26S protease regulatory subunit 4 (P26s4); serum albumin; haptoglobin; and two unknown proteins with isoelectronic point (pI) of 6.41 and molecular weight of 35.4 kDa, and pI of 8.05 and molecular weight of 27.4 kDa, respectively] were downregulated in MM compared with healthy controls. Expression of gel actin-related protein 2/3 complex subunit 1A (ARPC1A); immunoglobulin heavy constant γ 1; fibrinogen α chain (FGA) fragment D; and zinc finger protein 70 were increased in serum of MM patients. Protein expressions of ARPC1A, FGA, P26s4 and DBL2 were measured by immunoblotting in an independent cohort of 12 MM patients and 10 healthy controls. RT-qPCR analysis demonstrated that ARPC1A expression only mimicked protein expression, whereas FGA, PSMC1 (encoding P26s4) and MCF2 (encoding DBL2) did not exhibit significant changes in mRNA expression between control and MM samples. These proteins represent putative serological biomarkers for patients with MM.