Skip to Content
Merck
  • Increased permeability-glycoprotein inhibition at the human blood-brain barrier can be safely achieved by performing PET during peak plasma concentrations of tariquidar.

Increased permeability-glycoprotein inhibition at the human blood-brain barrier can be safely achieved by performing PET during peak plasma concentrations of tariquidar.

Journal of nuclear medicine : official publication, Society of Nuclear Medicine (2014-12-17)
William C Kreisl, Ritwik Bhatia, Cheryl L Morse, Alicia E Woock, Sami S Zoghbi, H Umesha Shetty, Victor W Pike, Robert B Innis
ABSTRACT

The permeability-glycoprotein (P-gp) efflux transporter is densely expressed at the blood-brain barrier, and its resultant spare capacity requires substantial blockade to increase the uptake of avid substrates, blunting the ability of investigators to measure clinically meaningful alterations in P-gp function. This study, conducted in humans, examined 2 P-gp inhibitors (tariquidar, a known inhibitor, and disulfiram, a putative inhibitor) and 2 routes of administration (intravenous and oral) to maximally increase brain uptake of the avid and selective P-gp substrate (11)C-N-desmethyl-loperamide (dLop) while avoiding side effects associated with high doses of tariquidar. Forty-two (11)C-dLop PET scans were obtained from 37 healthy volunteers. PET was performed with (11)C-dLop under the following 5 conditions: injected under baseline conditions without P-gp inhibition, injected 1 h after intravenous tariquidar infusion, injected during intravenous tariquidar infusion, injected after oral tariquidar, and injected after disulfiram. (11)C-dLop uptake was quantified with kinetic modeling using metabolite-corrected arterial input function or by measuring the area under the time-activity curve in the brain from 10 to 30 min. Neither oral tariquidar nor oral disulfiram increased brain uptake of (11)C-dLop. Injecting (11)C-dLop during tariquidar infusion, when plasma tariquidar concentrations reach their peak, resulted in a brain uptake of the radioligand approximately 5-fold greater than baseline. Brain uptake was similar with 2 and 4 mg of intravenous tariquidar per kilogram; however, the lower dose was better tolerated. Injecting (11)C-dLop after tariquidar infusion also increased brain uptake, though higher doses (up to 6 mg/kg) were required. Brain uptake of (11)C-dLop increased fairly linearly with increasing plasma tariquidar concentrations, but we are uncertain whether maximal uptake was achieved. We sought to increase the dynamic range of P-gp function measured after blockade. Performing (11)C-dLop PET during peak plasma concentrations of tariquidar, achieved with concurrent administration of intravenous tariquidar, resulted in greater P-gp inhibition at the human blood-brain barrier than delayed administration and allowed the use of a lower, more tolerable dose of tariquidar. On the basis of prior monkey studies, we suspect that plasma concentrations of tariquidar did not fully block P-gp; however, higher doses of tariquidar would likely be associated with unacceptable side effects.

MATERIALS
Product Number
Brand
Product Description

Loperamide hydrochloride, European Pharmacopoeia (EP) Reference Standard
Supelco
Loperamide hydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Loperamide hydrochloride, VETRANAL®, analytical standard
USP
Loperamide hydrochloride, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Loperamide hydrochloride