Skip to Content
Merck
  • Evaluation of a published in silico model and construction of a novel Bayesian model for predicting phospholipidosis inducing potential.

Evaluation of a published in silico model and construction of a novel Bayesian model for predicting phospholipidosis inducing potential.

Journal of chemical information and modeling (2007-04-13)
Dennis J Pelletier, Daniel Gehlhaar, Anne Tilloy-Ellul, Theodore O Johnson, Nigel Greene
ABSTRACT

The identification of phospholipidosis (PPL) during preclinical testing in animals is a recognized problem in the pharmaceutical industry. Depending on the intended indication and dosing regimen, PPL can delay or stop development of a compound in the drug discovery process. Therefore, for programs and projects where a PPL finding would have adverse impact on the success of the project, it would be desirable to be able to rapidly identify and screen out those compounds with the potential to induce PPL as early as possible. Currently, electron microscopy is the gold standard method for identifying phospholipidosis, but it is low-throughput and resource-demanding. Therefore, a low-cost, high-throughput screening strategy is required to overcome these limitations and be applicable in the drug discovery cycle. A recent publication by Ploemen et al. (Exp. Toxicol. Pathol. 2004, 55, 347-55) describes a method using the computed physicochemical properties pKa and ClogP as part of a simple calculation to determine a compound's potential to induce PPL. We have evaluated this method using a set of 201 compounds, both public and proprietary, with known in vivo PPL-inducing ability and have found the overall concordance to be 75%. We have proposed simple modifications to the model rules, which improve the model's concordance to 80%. Finally, we describe the development of a Bayesian model using the same compound set and found its overall concordance to be 83%.

MATERIALS
Product Number
Brand
Product Description

Supelco
Paraquat dichloride hydrate, PESTANAL®, analytical standard
Supelco
Carbon tetrachloride, analytical standard
Supelco
Chloroform, analytical standard
Supelco
Chloroform solution, certified reference material, 5000 μg/mL in methanol
Supelco
Chloroform solution, NMR reference standard, 20% in acetone-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.
Supelco
Chloroform solution, NMR reference standard, 1% in acetone-d6 (99.9 atom % D)
Sigma-Aldrich
Phenacetin, ≥98.0% (HPLC)
Supelco
Chloroform solution, NMR reference standard, 1% in acetone-d6 (99.9 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Erythromycin, tested according to Ph. Eur.
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Carbon tetrachloride, anhydrous, ≥99.5%
Sigma-Aldrich
Erythromycin, meets USP testing specifications
Sigma-Aldrich
Erythromycin, potency: ≥850 μg per mg
Sigma-Aldrich
Rifampicin, suitable for plant cell culture, BioReagent, ≥95% (HPLC), powder or crystals
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Sulindac, ≥98.0%
Supelco
Caffeine solution, analytical standard, 1.0 mg/mL in methanol
Sigma-Aldrich
Carbamazepine, meets USP testing specifications
Sigma-Aldrich
Rifampicin, ≥95% (HPLC), powder or crystals
Sigma-Aldrich
Acetylsalicylic acid, analytical standard
Sigma-Aldrich
17α-Ethynylestradiol, ≥98%
Sigma-Aldrich
Carbamazepine, powder
Sigma-Aldrich
Acetylsalicylic acid, ≥99.0%
Sigma-Aldrich
Chloroform solution, NMR reference standard, 50% in acetone-d6 (99.9 atom % D), chromium(III) acetylacetonate 0.2 %
Supelco
Melting point standard 235-237°C, analytical standard
Sigma-Aldrich
Chloroform solution, NMR reference standard, 3% in acetone-d6 (99.9 atom % D)
Sigma-Aldrich
Carbon tetrachloride, reagent grade, 99.9%
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Erythromycin, BioReagent, suitable for cell culture