Skip to Content
Merck
  • GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote Wallerian degeneration.

GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote Wallerian degeneration.

The Journal of cell biology (2017-01-06)
Shuji Wakatsuki, Shinji Tokunaga, Megumi Shibata, Toshiyuki Araki
ABSTRACT

Macroautophagy is a catabolic process, in which portions of cytoplasm or organelles are delivered to lysosomes for degradation. Emerging evidence has indicated a pathological connection between axonal degeneration and autophagy. However, the physiological function and induction mechanism of autophagy in axons remain elusive. We herein show that, through activation of BECLIN1, glycogen synthase kinase 3B (GSK3B)-mediated phosphorylation of BCL2 family member MCL1 induces axonal autophagy and axonal degeneration. Phosphorylated MCL1 is ubiquitinated by the FBXW7 ubiquitin ligase and degraded by the proteasome, thereby releasing BECLIN1 to induce axonal autophagy. Axonal autophagy contributes to local adenosine triphosphate production in degenerating axons and the exposure of phosphatidylserine-an "eat-me" signal for phagocytes-on transected axons and is required for normal recruitment of phagocytes to axonal debris in vivo. These results suggest that GSK3B-MCL1 signaling to regulate autophagy might be important for the successful completion of Wallerian degeneration.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
Anti-Neurofilament M (145 kDa) Antibody, CT, serum, Chemicon®