- Edible Ginger-derived Nano-lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon Cancer Therapy.
Edible Ginger-derived Nano-lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon Cancer Therapy.
The use of nanotechnology for drug delivery has shown great promise for improving cancer treatment. However, potential toxicity, hazardous environmental effects, issues with large-scale production, and potential excessive costs are challenges that confront their further clinical applications. Here, we describe a nanovector made from ginger-derived lipids that can serve as a delivery platform for the therapeutic agent doxorubicin (Dox) to treat colon cancer. We created nanoparticles from ginger and reassembled their lipids into ginger-derived nanovectors (GDNVs). A subsequent characterization showed that GDNVs were efficiently taken up by colon cancer cells. Viability and apoptosis assays and electric cell-substrate impedance-sensing technology revealed that GDNVs exhibited excellent biocompatibility up to 200 μmol/l; by contrast, cationic liposomes at the same concentrations decreased cell proliferation and increased apoptosis. GDNVs were capable of loading Dox with high efficiency and showed a better pH-dependent drug-release profile than commercially available liposomal-Dox. Modified GDNVs conjugated with the targeting ligand folic acid mediated targeted delivery of Dox to Colon-26 tumors in vivo and enhanced the chemotherapeutic inhibition of tumor growth compared with free drug. Current experiments explore the feasibility of producing nature-derived nanoparticles that are effective as a treatment vehicle while potentially attenuating the issues related to traditional synthetic nanoparticles.