Skip to Content
Merck
  • Human exposure modelling of quercetin in onions (Allium cepa L.) following thermal processing.

Human exposure modelling of quercetin in onions (Allium cepa L.) following thermal processing.

Food chemistry (2015-05-16)
S Harris, N Brunton, U Tiwari, E Cummins
ABSTRACT

Post-harvest treatment can influence levels of secondary metabolites in fruits and vegetables. Onions contain high levels of quercetin but are commonly heat-treated before consumption. Hence, the objective of this study was to examine the effect of cooking treatments on the flavonoid (3,4'-Qdg and 4'-Qmg) concentrations in onion and to determine, by simulation modelling, probable human exposure. Onion samples (n=3) were cooked using three processes (fry, bake and steam) for three time intervals (5, 10 and 15 min). Frying (<10 min) was the ideal cooking method which retained concentrations of 3,4'-Qdg and 4'-Qmg at >50%. Thermal processing (>10 min) was shown to decrease quercetin content in all samples. The simulation model predicted human absorption and exposure. Steaming (15 min) resulted in the lowest quercetin exposure, with mean values of 4000 and 400 μg/day for 3,4'-Qdg and 4'-Qmg, respectively. Untreated onions had mean exposures of 14,000 and 3000 μg/day for 3,4'-Qdg and 4'-Qmg, respectively.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Quercetin, ≥95% (HPLC), solid
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis