Skip to Content
Merck
  • Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors.

Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors.

Proceedings of the National Academy of Sciences of the United States of America (1992-02-15)
W Sun, A V Ferrer-Montiel, A F Schinder, J P McPherson, G A Evans, M Montal
ABSTRACT

A full-length cDNA clone encoding a glutamate receptor was isolated from a human brain cDNA library, and the gene product was characterized after expression in Xenopus oocytes. Degenerate PCR primers to conserved regions of published rat brain glutamate receptor sequences amplified a 1-kilobase fragment from a human brain cDNA library. This fragment was used as a probe for subsequent hybridization screening. Two clones were isolated that, based on sequence information, code for different receptors: a 3-kilobase clone, HBGR1, contains a full-length glutamate receptor cDNA highly homologous to the rat brain clone GluR1, and a second clone, HBGR2, contains approximately two-thirds of the coding region of a receptor homologous to rat brain clone GluR2. Southern and PCR analysis of a somatic cell-hybrid panel mapped HBGR1 to human chromosome 5q31.3-33.3 and mapped HBGR2 to chromosome 4q25-34.3. Xenopus oocytes injected with in vitro-synthesized HBGR1 cRNA expressed currents activated by glutamate receptor agonists with the following specificity sequence: domoate greater than kainate much greater than quisqualate greater than or equal to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid greater than or equal to L-glutamate much greater than N-methyl-D-aspartate. The kainate-elicited currents were specifically blocked by 6-cyano-7-nitroquinoxaline-2,3-dione but were insensitive to 2-amino-5-phosphonovalerate and kynurenic acid. These results indicate that clone HBGR1 codes for a glutamate receptor of the kainate subtype cognate to members of the glutamate receptor family from rodent brain.