Skip to Content
Merck
  • The Role of ZO-2 in Modulating JAM-A and γ-Actin Junctional Recruitment, Apical Membrane and Tight Junction Tension, and Cell Response to Substrate Stiffness and Topography.

The Role of ZO-2 in Modulating JAM-A and γ-Actin Junctional Recruitment, Apical Membrane and Tight Junction Tension, and Cell Response to Substrate Stiffness and Topography.

International journal of molecular sciences (2024-03-13)
Diana Cristina Pinto-Dueñas, Christian Hernández-Guzmán, Patrick Matthew Marsch, Anand Sunil Wadurkar, Dolores Martín-Tapia, Lourdes Alarcón, Genaro Vázquez-Victorio, Juan Vicente Méndez-Méndez, José Jorge Chanona-Pérez, Shikha Nangia, Lorenza González-Mariscal
ABSTRACT

This work analyzes the role of the tight junction (TJ) protein ZO-2 on mechanosensation. We found that the lack of ZO-2 reduced apical membrane rigidity measured with atomic force microscopy, inhibited the association of γ-actin and JAM-A to the cell border, and instead facilitated p114RhoGEF and afadin accumulation at the junction, leading to an enhanced mechanical tension at the TJ measured by FRET, with a ZO-1 tension probe, and increased tricellular TJ tension. Simultaneously, adherens junction tension measured with an E-cadherin probe was unaltered. The stability of JAM-A and ZO-2 binding was assessed by a collaborative in silico study. The absence of ZO-2 also impacted the cell response to the substrate, as monolayers plated in 20 kPa hydrogels developed holes not seen in parental cultures and displayed a retarded elongation and formation of cell aggregates. The absence of ZO-2 was sufficient to induce YAP and Snail nuclear accumulation in cells cultured over glass, but when ZO-2 KD cells were plated in nanostructured ridge arrays, they displayed an increased abundance of nuclear Snail and conspicuous internalization of claudin-4. These results indicate that the absence of ZO-2 also impairs the response of cells to substrate stiffness and exacerbates transformation triggered by substrate topography.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-Vinculin antibody produced in mouse, clone VIN-11-5, ascites fluid
Sigma-Aldrich
Anti-l/s-Afadin antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
Docetaxel, purum, ≥97.0% (HPLC)
Sigma-Aldrich
(−)-Blebbistatin, solid, synthetic