Skip to Content
Merck
  • Sevoflurane inhibits migration and invasion of glioma cells via regulating miR-34a-5p/MMP-2 axis.

Sevoflurane inhibits migration and invasion of glioma cells via regulating miR-34a-5p/MMP-2 axis.

Life sciences (2020-06-06)
Huaping Zhao, Fei Xing, Jingjing Yuan, Zhisong Li, Wei Zhang
ABSTRACT

Glioma is the most common brain malignancy and surgical resection is the primary option for patient with glioma. Anesthetics could be used to inhibit cancer dissemination and metastasis during surgery. This study aims to assess the function of volatile anesthetic sevoflurane in glioma migration and invasion and explore the potential mechanism. Twenty-five patients with glioma were recruited in this study. LN229 and U251 cells were used in vitro experiments. Cell viability was analyzed by MTT analysis. Cell migration and invasion were examined via transwell analysis. microRNA-34a-5p (miR-34a-5p) and matrix metalloproteinase-2 (MMP-2) levels were measured via quantitative real-time polymerase chain reaction. The relationship of miR-34a-5p and MMP-2 was tested via bioinformatics analysis, luciferase reporter analysis, RNA immunoprecipitation and RNA pull-down. Sevoflurane decreased glioma cell migration and invasion. In glioma cells, sevoflurane up-regulated miR-34a-5p abundance and down-regulated MMP-2 level. Overexpression of miR-34a-5p contributed to sevoflurane-caused suppression of migration and invasion, while its knockdown played an opposite effect. MMP-2 was targeted via miR-34a-5p and MMP-2 silence reversed the influence of miR-34a-5p knockdown under sevoflurane. Sevoflurane exposure represses cell migration and invasion, which might be related to inhibition of MMP-2 by up-regulating miR-34a-5p. This study provides a novel mechanism for understanding the pharmacological effects of sevoflurane on glioma.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human MMP2