Skip to Content
Merck
  • Liquidity Is a Critical Determinant for Selective Autophagy of Protein Condensates.

Liquidity Is a Critical Determinant for Selective Autophagy of Protein Condensates.

Molecular cell (2020-01-30)
Akinori Yamasaki, Jahangir Md Alam, Daisuke Noshiro, Eri Hirata, Yuko Fujioka, Kuninori Suzuki, Yoshinori Ohsumi, Nobuo N Noda
ABSTRACT

Clearance of biomolecular condensates by selective autophagy is thought to play a crucial role in cellular homeostasis. However, the mechanism underlying selective autophagy of condensates and whether liquidity determines a condensate's susceptibility to degradation by autophagy remain unknown. Here, we show that the selective autophagic cargo aminopeptidase I (Ape1) undergoes phase separation to form semi-liquid droplets. The Ape1-specific receptor protein Atg19 localizes to the surface of Ape1 droplets both in vitro and in vivo, with the "floatability" of Atg19 preventing its penetration into droplets. In vitro reconstitution experiments reveal that Atg19 and lipidated Atg8 are necessary and sufficient for selective sequestration of Ape1 droplets by membranes. This sequestration is impaired by mutational solidification of Ape1 droplets or diminished ability of Atg19 to float. Taken together, we propose that cargo liquidity and the presence of sufficient amounts of autophagic receptor on cargo are crucial for selective autophagy of biomolecular condensates.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Mouse IgG (whole molecule)–Peroxidase antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
Anti-Rabbit IgG (whole molecule)–Peroxidase antibody produced in goat, affinity isolated antibody
Sigma-Aldrich
Maltose solution, for molecular biology, BioReagent, ~20% in H2O
Roche
Anti-GFP, from mouse IgG1κ (clones 7.1 and 13.1)