Skip to Content
Merck
  • Characterizing synthetic polymers and additives using new ionization methods for mass spectrometry.

Characterizing synthetic polymers and additives using new ionization methods for mass spectrometry.

Rapid communications in mass spectrometry : RCM (2014-04-25)
Tarick J El-Baba, Corinne A Lutomski, Beixi Wang, Sarah Trimpin
ABSTRACT

New inlet and vacuum ionization methods provide advantages of specificity, simplicity and speed for the analysis of synthetic polymers and polymer additives directly from surfaces such as fibers using mass spectrometry (MS) on different commercial mass spectrometers (Waters SYNAPT G2, Thermo LTQ Velos). We compare inlet ionization methods with the recently discovered vacuum ionization method. This method, termed matrix assisted ionization vacuum (MAIV), utilizes the matrix 3-nitrobenzonitrile (3-NBN) for the analysis of synthetic polymers and additives without additional energy input by simply exposing the matrix:analyte:salt to the vacuum of the mass spectrometer. Matrix:analyte:salt samples can be introduced while dry (surfaces, e.g. glass slides, pipet tips) or slightly wet (e.g. filter paper, pipet tips). Compounds ionized by these methods can be analyzed in both positive and negative detection modes through cationization or deprotonation, respectively. The dynamic range of the experiment can be enhanced, as well as structural analysis performed, by coupling the vacuum ionization method with ion mobility spectrometry mass spectrometry (IMS-MS) and tandem mass spectrometric (MS/MS) fragmentation. The specificity of 3-NBN matrix to ionize small and large nonvolatile analyte molecules by MAIV makes this matrix a good choice for observing low-abundance additives in the presence of large amounts of synthetic polymer using MS.

MATERIALS
Product Number
Brand
Product Description

Supelco
Ethylene glycol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Supelco
Acetic acid, analytical standard
Supelco
Ethylene glycol, analytical standard
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Supelco
Ethylene glycol solution, NMR reference standard, 80% in DMSO-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Lithium chloride, powder, ≥99.98% trace metals basis
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Supelco
Lithium chloride solution, 1 M in ethanol
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Poly(ethylene glycol) bis(2-ethylhexanoate), average Mn ~650
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Supelco
Tetrahydrofuran, analytical standard
Supelco
Tetrahydrofuran, Selectophore, ≥99.5%
Sigma-Aldrich
Lithium chloride, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
Ethylene glycol, anhydrous, 99.8%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Supelco
Tetrahydrofuran, HPLC grade, ≥99.9%, inhibitor-free
Sigma-Aldrich
Lithium-7Li chloride, 99 atom % 7Li, 99% (CP)
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Lithium chloride, AnhydroBeads, −10 mesh, 99.998% trace metals basis
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
3-Nitrobenzonitrile, 98%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis