Skip to Content
Merck
  • Mustn1 is a smooth muscle cell-secreted microprotein that modulates skeletal muscle extracellular matrix composition.

Mustn1 is a smooth muscle cell-secreted microprotein that modulates skeletal muscle extracellular matrix composition.

Molecular metabolism (2024-03-09)
Serge Ducommun, Paulo R Jannig, Igor Cervenka, Marta Murgia, Melanie J Mittenbühler, Ekaterina Chernogubova, José M Dias, Baptiste Jude, Jorge C Correia, Jonathan G Van Vranken, Gabriel Ocana-Santero, Margareta Porsmyr-Palmertz, Sarah McCann Haworth, Vicente Martínez-Redondo, Zhengye Liu, Mattias Carlström, Matthias Mann, Johanna T Lanner, Ana I Teixeira, Lars Maegdefessel, Bruce M Spiegelman, Jorge L Ruas
ABSTRACT

Skeletal muscle plasticity and remodeling are critical for adapting tissue function to use, disuse, and regeneration. The aim of this study was to identify genes and molecular pathways that regulate the transition from atrophy to compensatory hypertrophy or recovery from injury. Here, we have used a mouse model of hindlimb unloading and reloading, which causes skeletal muscle atrophy, and compensatory regeneration and hypertrophy, respectively. We analyzed mouse skeletal muscle at the transition from hindlimb unloading to reloading for changes in transcriptome and extracellular fluid proteome. We then used qRT-PCR, immunohistochemistry, and bulk and single-cell RNA sequencing data to determine Mustn1 gene and protein expression, including changes in gene expression in mouse and human skeletal muscle with different challenges such as exercise and muscle injury. We generated Mustn1-deficient genetic mouse models and characterized them in vivo and ex vivo with regard to muscle function and whole-body metabolism. We isolated smooth muscle cells and functionally characterized them, and performed transcriptomics and proteomics analysis of skeletal muscle and aorta of Mustn1-deficient mice. We show that Mustn1 (Musculoskeletal embryonic nuclear protein 1, also known as Mustang) is highly expressed in skeletal muscle during the early stages of hindlimb reloading. Mustn1 expression is transiently elevated in mouse and human skeletal muscle in response to intense exercise, resistance exercise, or injury. We find that Mustn1 expression is highest in smooth muscle-rich tissues, followed by skeletal muscle fibers. Muscle from heterozygous Mustn1-deficient mice exhibit differences in gene expression related to extracellular matrix and cell adhesion, compared to wild-type littermates. Mustn1-deficient mice have normal muscle and aorta function and whole-body glucose metabolism. We show that Mustn1 is secreted from smooth muscle cells, and that it is present in arterioles of the muscle microvasculature and in muscle extracellular fluid, particularly during the hindlimb reloading phase. Proteomics analysis of muscle from Mustn1-deficient mice confirms differences in extracellular matrix composition, and female mice display higher collagen content after chemically induced muscle injury compared to wild-type littermates. We show that, in addition to its previously reported intracellular localization, Mustn1 is a microprotein secreted from smooth muscle cells into the muscle extracellular space. We explore its role in muscle ECM deposition and remodeling in homeostasis and upon muscle injury. The role of Mustn1 in fibrosis and immune infiltration upon muscle injury and dystrophies remains to be investigated, as does its potential for therapeutic interventions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-MUSTN1, from rabbit, purified by affinity chromatography
Roche
cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail, Protease Inhibitor Cocktail Tablets provided in a glass vial, Tablets provided in a glass vial
Sigma-Aldrich
Anti-α-Tubulin antibody, Mouse monoclonal, clone DM1A, purified from hybridoma cell culture