Saltar al contenido
Merck

Integrin α4β1 and TLR4 Cooperate to Induce Fibrotic Gene Expression in Response to Fibronectin's EDA Domain.

The Journal of investigative dermatology (2017-08-27)
Rhiannon M Kelsh-Lasher, Anthony Ambesi, Ceyda Bertram, Paula J McKeown-Longo
RESUMEN

Alternative splicing of fibronectin increases expression of the EDA+ isoform of fibronectin (EDA+Fn), a damage-associated molecular pattern molecule, which promotes fibro-inflammatory disease through the activation of toll-like receptors. Our studies indicate that the fibronectin EDA domain drives two waves of gene expression in human dermal fibroblasts. The first wave, seen at 2 hours, consisted of inflammatory genes, VCAM1, and tumor necrosis factor. The second wave, evaluated at 24 hours, was composed of the fibrosis-associated cytokines IL-10 and IL-13 and extracellular matrix genes fibronectin and osteopontin. Gene expression was coordinately regulated by the α4β1 integrin and the innate immune receptor toll-like receptor 4. Additionally, we found a significant toll-like receptor 4/α4β1-dependent enrichment in the ratio of EDA+Fn to total fibronectin in response to EDA, consistent with EDA+Fn initiating further production of EDA+Fn. Our data also suggest that the EDA/α4β1 integrin interaction primes the cell for an enhanced response to toll-like receptor 4 ligands. Our studies provide evidence that remodeling of the fibronectin matrix in injured or diseased tissue elicits an EDA-dependent fibro-inflammatory response in dermal fibroblasts. The data suggest a paradigm of damage-associated molecular pattern-based signaling whereby damage-associated molecular pattern binding integrins cooperate with innate immune receptors to stimulate inflammation and fibrosis.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
DL-Glyceraldehyde 3-phosphate solution, 45-55 mg/mL in H2O
Sigma-Aldrich
Anti-Integrin α4 Antibody, clone P1H4, clone P1H4, Chemicon®, from mouse