Saltar al contenido
Merck

Sizing Up Excitons in Core-Shell Quantum Dots via Shell-Dependent Photoluminescence Blinking.

ACS nano (2017-07-06)
Aidan A E Fisher, Mark A Osborne
RESUMEN

Semiconductor nanocrystals or quantum dots (QDs) are now widely used across solar cell, display, and bioimaging technologies. While advances in multishell, alloyed, and multinary core-shell QD structures have led to improved light-harvesting and photoluminescence (PL) properties of these nanomaterials, the effects that QD-capping have on the exciton dynamics that govern PL instabilities such as blinking in single-QDs is not well understood. We report experimental measurements of shell-size-dependent absorption and PL intermittency in CdSe-CdS QDs that are consistent with a modified charge-tunnelling, self-trapping (CTST) description of the exciton dynamics in these nanocrystals. By introducing an effective, core-exciton size, which accounts for delocalization of charge carriers across the QD core and shell, we show that the CTST models both the shell-depth-dependent red-shift of the QD band gap and changes in the on/off-state switching statistics that we observe in single-QD PL intensity trajectories. Further analysis of CdSe-ZnS QDs, shows how differences in shell structure and integrity affect the QD band gap and PL blinking within the CTST framework.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Sulfur, purum p.a., ≥99% (T)