Saltar al contenido
Merck
  • Micro/milliflow processing with selective catalyst microwave heating in the Cu-catalyzed Ullmann etherification reaction: a μ(2)-process.

Micro/milliflow processing with selective catalyst microwave heating in the Cu-catalyzed Ullmann etherification reaction: a μ(2)-process.

ChemSusChem (2012-11-30)
Faysal Benaskar, Narendra G Patil, Evgeny V Rebrov, Alladin Ben-Abdelmoumen, Jan Meuldijk, Lumbertus A Hulshof, Volker Hessel, Jaap C Schouten
RESUMEN

A μ(2)-process in the Ullmann-type C-O coupling of potassium phenolate and 4-chloropyridine was successfully performed in a combined microwave (MW) and microflow process. Selective MW absorption in a micro-fixed-bed reactor (μ-FBR) by using a supported Cu nanocatalyst resulted in an increased activity compared to an oil-bath heated process. Yields of up to 80 % were attained by using a multisegmented μ-FBR without significant catalyst deactivation. The μ-FBR was packed with beads coated with Cu/TiO(2) and CuZn/TiO(2) catalysts. Temperature measurements along axial positions of the reactor were performed by using a fiber-optic probe in the catalyst bed. The simultaneous application of MW power and temperature sensors resulted in an isothermal reactor at 20 W. Initially, only solvent was used to adjust the MW field density in the cavity and optimize the power utility. Subsequently, the reaction mixture was added to ensure the maximum MW power transfer by adjusting the waveguide stub tuners to steady-state operations as a result of the changed reaction mixture composition and, therefore, the dielectric properties. Finally, the beneficial influence of the Cu/TiO(2)- and CuZn/TiO(2)-coated glass beads (200 μm) on the MW absorption as a result of the additional absorbing effect of the metallic Cu nanoparticles was optimized in a fine-tuning step. For the catalyst synthesis, various sol-gel, deposition, and impregnation methods provided Cu catalyst loadings of around 1 wt %. The addition of Zn to the Cu nanocatalyst revealed an increased catalyst activity owing to the presence of stable Cu(0). Multilaminar mixing was necessary because of the large difference in fluid viscosities. To the best of our knowledge, this work is the first extended experimental survey of the decisive parameters to combine microprocess and single-mode MW technology following the concepts of "novel process windows" for organic syntheses.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Dietiléter, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Dietiléter, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Dietiléter, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Dietiléter, contains BHT as inhibitor, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Dietiléter, contains 1 ppm BHT as inhibitor, anhydrous, ≥99.7%
Sigma-Aldrich
Dietiléter, ACS reagent, ≥98.0%, contains ≤2% ethanol and ≤10ppm BHT as inhibitor
Sigma-Aldrich
Dietiléter, SAJ first grade, ≥99.0%
Sigma-Aldrich
Dietiléter, puriss., contains ~5 mg/L 2,6-di-tert.-butyl-4-methylphenol as stabilizer, meets analytical specification of Ph. Eur., BP, ≥99.5% (GC)
Sigma-Aldrich
Dietiléter, reagent grade, ≥98%, contains ≤2% ethanol and ≤10ppm BHT as inhibitor
Sigma-Aldrich
Dietiléter, JIS special grade, ≥99.5%
Supelco
Dietiléter, analytical standard
Sigma-Aldrich
Dietiléter, ≥99.5%
Sigma-Aldrich
Dietiléter, JIS 300, ≥99.5%, for residue analysis
Sigma-Aldrich
Dietiléter, for residue analysis, JIS 5000
Sigma-Aldrich
Dietiléter, JIS 1000, ≥99.5%, for residue analysis