Saltar al contenido
Merck

Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification.

Nano letters (2010-09-25)
Nam Hoon Kim, Seung Joon Lee, Martin Moskovits
RESUMEN

A bifunctional adenosine-sensitive double-stranded DNA aptamer was used to create and control a surface-enhanced Raman spectroscopy (SERS) hot spot between a bulk Au surface and a gold nanoparticle (Au NP) attached to the aptamer via a biotin-avidin linkage. The Au NP was decorated with 4-aminobenzenethiol (4-ABT), a Raman reporter molecule. In the presence of adenosine, the target molecule, the SERS spectrum of 4-ABT increased in intensity by (concentration-dependent) factors as large as ∼4; in situ, atomic force microscopy imaging showed the mean height of the Au NP-bearing aptamer to decrease by ∼5 nm consistent with the observed SERS intensity change. Because the aptamer's geometrical change is induced by one or two molecules, while the resulting SERS intensity changes involve many reporter molecules residing in the modified hot spot, the aptamer amplifies the SERS effect.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Ácido sulfanílico, ACS reagent, 99%
Sigma-Aldrich
Ácido sulfanílico, puriss. p.a., ≥99.0% (T)
Millipore
Nitrate Reagent B, suitable for microbiology
Sigma-Aldrich
Ácido sulfanílico, JIS special grade, 99.0-100.5%