Skip to Content
Merck
  • Including exposure variability in the life cycle impact assessment of indoor chemical emissions: the case of metal degreasing.

Including exposure variability in the life cycle impact assessment of indoor chemical emissions: the case of metal degreasing.

Environment international (2014-06-28)
Laura Golsteijn, Daan Huizer, Mara Hauck, Rosalie van Zelm, Mark A J Huijbregts
ABSTRACT

The present paper describes a method that accounts for variation in indoor chemical exposure settings and accompanying human toxicity in life cycle assessment (LCA). Metal degreasing with dichloromethane was used as a case study to show method in practice. We compared the human toxicity related to the degreasing of 1m(2) of metal surface in different exposure scenarios for industrial workers, professional users outside industrial settings, and home consumers. The fraction of the chemical emission that is taken in by exposed individuals (i.e. the intake fraction) was estimated on the basis of operational conditions (e.g. exposure duration), and protective measures (e.g. local exhaust ventilation). The introduction of a time-dependency and a correction for protective measures resulted in reductions in the intake fraction of up to 1.5 orders of magnitude, compared to application of existing, less advanced models. In every exposure scenario, the life cycle impacts for human toxicity were mainly caused by indoor exposure to metal degreaser (>60%). Emissions released outdoors contributed up to 22% of the life cycle impacts for human toxicity, and the production of metal degreaser contributed up to 19%. These findings illustrate that human toxicity from indoor chemical exposure should not be disregarded in LCA case studies. Particularly when protective measures are taken or in the case of a short duration (1h or less), we recommend the use of our exposure scenario-specific approach.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dichloromethane, JIS special grade, ≥99.0%
Sigma-Aldrich
Dichloromethane, SAJ first grade, ≥99.0%
Supelco
Dichloromethane solution, contains 10 % (v/v) methanol
Supelco
Dichloromethane, ≥99.9%
Supelco
Dichloromethane, Selectophore, ≥99.5%
Supelco
Dichloromethane, analytical standard
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dichloromethane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dichloromethane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dichloromethane, puriss., meets analytical specification of Ph. Eur., NF, ≥99% (GC)
Sigma-Aldrich
Dichloromethane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Dichloromethane, puriss. p.a., ACS reagent, reag. ISO, ≥99.9% (GC)
Sigma-Aldrich
Dichloromethane, biotech. grade, 99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Dichloromethane, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer