Skip to Content
Merck

Foam invasion through a single pore.

Physical review. E, Statistical, nonlinear, and soft matter physics (2011-08-27)
Aline Delbos, Olivier Pitois
ABSTRACT

We investigate experimentally the behavior of liquid foams pumped at a given flow rate through a single pore, in the situation where the pore diameter is smaller than the bubble diameter. Results reveal that foam invasion can be observed only within a restricted range of values for the dimensionless flow rate and the foam liquid fraction. Within this foam invasion regime, the liquid content of invading foams is measured to be three times higher than the initial liquid content. Outside this regime, both gas alone and liquid alone invasion regimes can be observed. The gas invasion regime results from the rupture of foam films during local T1, during bubble rearrangements events induced by foam flow, whereas the liquid invasion regime is allowed by the formation of a stable cluster of jammed bubbles at the pore's opening.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Myristyltrimethylammonium bromide, 98% (AT)
Supelco
Myristyltrimethylammonium bromide, suitable for ion pair chromatography, LiChropur, ≥99.0% (AT)
Sigma-Aldrich
Trimethyl-tetradecylammonium chloride, ≥98.0% (AT)
Sigma-Aldrich
Myristyltrimethylammonium bromide, ≥99%