Skip to Content
Merck
  • Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization.

Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization.

Nature communications (2020-01-19)
Huang Zhou, Yafei Zhao, Jie Xu, Haoran Sun, Zhijun Li, Wei Liu, Tongwei Yuan, Wei Liu, Xiaoqian Wang, Weng-Chon Cheong, Zhiyuan Wang, Xin Wang, Chao Zhao, Yancai Yao, Wenyu Wang, Fangyao Zhou, Min Chen, Benjin Jin, Rongbo Sun, Jing Liu, Xun Hong, Tao Yao, Shiqiang Wei, Jun Luo, Yuen Wu
ABSTRACT

The sintering of supported metal nanoparticles is a major route to the deactivation of industrial heterogeneous catalysts, which largely increase the cost and decrease the productivity. Here, we discover that supported palladium/gold/platinum nanoparticles distributed at the interface of oxide supports and nitrogen-doped carbon shells would undergo an unexpected nitrogen-doped carbon atomization process against the sintering at high temperatures, during which the nanoparticles can be transformed into more active atomic species. The in situ transmission electron microscopy images reveal the abundant nitrogen defects in carbon shells provide atomic diffusion sites for the mobile atomistic palladium species detached from the palladium nanoparticles. More important, the catalytic activity of sintered and deactivated palladium catalyst can be recovered by this unique N-doped carbon atomization process. Our findings open up a window to preparation of sintering-resistant single atoms catalysts and regeneration of deactivated industrial catalysts.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium tetrachloropalladate(II), ≥99.99% trace metals basis