Skip to Content
Merck
  • 3-Mercaptopyruvate sulfurtransferase supports endothelial cell angiogenesis and bioenergetics.

3-Mercaptopyruvate sulfurtransferase supports endothelial cell angiogenesis and bioenergetics.

British journal of pharmacology (2019-01-16)
Armita Abdollahi Govar, Gábor Törő, Peter Szaniszlo, Athanasia Pavlidou, Sofia-Iris Bibli, Ketan Thanki, Vicente A Resto, Celia Chao, Mark R Hellmich, Csaba Szabo, Andreas Papapetropoulos, Katalin Módis
ABSTRACT

During angiogenesis, quiescent endothelial cells (ECs) are activated by various stimuli to form new blood vessels from pre-existing ones in physiological and pathological conditions. Many research groups have shown that hydrogen sulfide (H2 S), the newest member of the gasotransmitter family, acts as a proangiogenic factor. To date, very little is known about the regulatory role of 3-mercaptopyruvate sulfurtransferase (3-MST), an important H2 S-producing enzyme in ECs. The aim of our study was to explore the potential role of 3-MST in human EC bioenergetics, metabolism, and angiogenesis. To assess in vitro angiogenic responses, we used EA.hy926 human vascular ECs subjected to shRNA-mediated 3-MST attenuation and pharmacological inhibition of proliferation, migration, and tube-like network formation. To evaluate bioenergetic parameters, cell respiration, glycolysis, glucose uptake, and mitochondrial/glycolytic ATP production were measured. Finally, global metabolomic profiling was performed to determine the level of 669 metabolic compounds. 3-MST-attenuated ECs subjected to shRNA or pharmacological inhibition of 3-MST significantly reduced EC proliferation, migration, and tube-like network formation. 3-MST silencing also suppressed VEGF-induced EC migration. From bioenergetic and metabolic standpoints, 3-MST attenuation decreased mitochondrial respiration and mitochondrial ATP production, increased glucose uptake, and perturbed the entire EC metabolome. 3-MST regulates bioenergetics and morphological angiogenic functions in human ECs. The data presented in the current report support the view that 3-MST pathway may be a potential candidate for therapeutic modulation of angiogenesis. This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Mouse IgG (whole molecule)–Peroxidase antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, ≥98% (TLC), powder
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-74, purified immunoglobulin, buffered aqueous solution
Sigma-Aldrich
Anti-MPST antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Sodium mercaptopyruvate dihydrate, 97.0-103.0% (NT)
Sigma-Aldrich
Anti-DAO antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
MISSION® pLKO.1-puro Non-Mammalian shRNA Control Transduction Particles, Targets no known mammalian genes
Sigma-Aldrich
2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose, ≥97% (HPLC)