Skip to Content
Merck
  • WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy.

WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy.

Proceedings of the National Academy of Sciences of the United States of America (2017-10-29)
Meghna Kannan, Efil Bayam, Christel Wagner, Bruno Rinaldi, Perrine F Kretz, Peggy Tilly, Marna Roos, Lara McGillewie, Séverine Bär, Shilpi Minocha, Claire Chevalier, Chrystelle Po, Jamel Chelly, Jean-Louis Mandel, Renato Borgatti, Amélie Piton, Craig Kinnear, Ben Loos, David J Adams, Yann Hérault, Stephan C Collins, Sylvie Friant, Juliette D Godin, Binnaz Yalcin
ABSTRACT

The family of WD40-repeat (WDR) proteins is one of the largest in eukaryotes, but little is known about their function in brain development. Among 26 WDR genes assessed, we found 7 displaying a major impact in neuronal morphology when inactivated in mice. Remarkably, all seven genes showed corpus callosum defects, including thicker (Atg16l1, Coro1c, Dmxl2, and Herc1), thinner (Kif21b and Wdr89), or absent corpus callosum (Wdr47), revealing a common role for WDR genes in brain connectivity. We focused on the poorly studied WDR47 protein sharing structural homology with LIS1, which causes lissencephaly. In a dosage-dependent manner, mice lacking Wdr47 showed lethality, extensive fiber defects, microcephaly, thinner cortices, and sensory motor gating abnormalities. We showed that WDR47 shares functional characteristics with LIS1 and participates in key microtubule-mediated processes, including neural stem cell proliferation, radial migration, and growth cone dynamics. In absence of WDR47, the exhaustion of late cortical progenitors and the consequent decrease of neurogenesis together with the impaired survival of late-born neurons are likely yielding to the worsening of the microcephaly phenotype postnatally. Interestingly, the WDR47-specific C-terminal to LisH (CTLH) domain was associated with functions in autophagy described in mammals. Silencing WDR47 in hypothalamic GT1-7 neuronal cells and yeast models independently recapitulated these findings, showing conserved mechanisms. Finally, our data identified superior cervical ganglion-10 (SCG10) as an interacting partner of WDR47. Taken together, these results provide a starting point for studying the implications of WDR proteins in neuronal regulation of microtubules and autophagy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-GAPDH antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-phospho-mTOR (pSer2448) antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
Anti-Microtubule-Associated Protein 2 (MAP2) Antibody, Chemicon®, from rabbit
Sigma-Aldrich
GeneJuice® Transfection Reagent, Non-lipid based chemical transfection reagent optimized for maximum transfection efficiency, ease-of-use, and minimal cytotoxicity on a wide variety of mammalian cells.
Sigma-Aldrich
Anti-Neural Cell Adhesion Molecule L1 Antibody, clone 324, clone 324, Chemicon®, from rat
Sigma-Aldrich
Anti-STMN2 Antibody, clone L5/1, clone L5/1, from mouse
Sigma-Aldrich
Anti-MTOR antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
Monoclonal Anti-Tubulin, Acetylated antibody produced in mouse, clone 6-11B-1, ascites fluid
Sigma-Aldrich
Anti-β-Actin−Peroxidase antibody, Mouse monoclonal, clone AC-15, purified from hybridoma cell culture
Roche
Anti-GFP, from mouse IgG1κ (clones 7.1 and 13.1)
Sigma-Aldrich
Anti-PAX6 Antibody, from rabbit, purified by affinity chromatography