Skip to Content
Merck
  • Ubiquitination and regulation of AURKA identifies a hypoxia-independent E3 ligase activity of VHL.

Ubiquitination and regulation of AURKA identifies a hypoxia-independent E3 ligase activity of VHL.

Oncogene (2017-01-24)
E Hasanov, G Chen, P Chowdhury, J Weldon, Z Ding, E Jonasch, S Sen, C L Walker, R Dere
ABSTRACT

The hypoxia-regulated tumor-suppressor von Hippel-Lindau (VHL) is an E3 ligase that recognizes its substrates as part of an oxygen-dependent prolyl hydroxylase (PHD) reaction, with hypoxia-inducible factor α (HIFα) being its most notable substrate. Here we report that VHL has an equally important function distinct from its hypoxia-regulated activity. We find that Aurora kinase A (AURKA) is a novel, hypoxia-independent target for VHL ubiquitination. In contrast to its hypoxia-regulated activity, VHL mono-, rather than poly-ubiquitinates AURKA, in a PHD-independent reaction targeting AURKA for degradation in quiescent cells, where degradation of AURKA is required to maintain the primary cilium. Tumor-associated variants of VHL differentiate between these two functions, as a pathogenic VHL mutant that retains intrinsic ability to ubiquitinate HIFα is unable to ubiquitinate AURKA. Together, these data identify VHL as an E3 ligase with important cellular functions under both normoxic and hypoxic conditions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
DL-Glyceraldehyde 3-phosphate solution, 45-55 mg/mL in H2O
Sigma-Aldrich
VHL human, recombinant, expressed in insect cells, ≥70% (SDS-PAGE)
Sigma-Aldrich
Monoclonal Anti-Tubulin, Acetylated antibody produced in mouse, clone 6-11B-1, ascites fluid
Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)