Skip to Content
Merck
  • Complete sequences of IncHI1 plasmids carrying blaCTX-M-1 and qnrS1 in equine Escherichia coli provide new insights into plasmid evolution.

Complete sequences of IncHI1 plasmids carrying blaCTX-M-1 and qnrS1 in equine Escherichia coli provide new insights into plasmid evolution.

The Journal of antimicrobial chemotherapy (2014-05-28)
Monika Dolejska, Laura Villa, Marco Minoia, Luca Guardabassi, Alessandra Carattoli
ABSTRACT

To determine the structure of two multidrug-resistant IncHI1 plasmids carrying blaCTX-M-1 in Escherichia coli isolates disseminated in an equine clinic in the Czech Republic. A complete nucleotide sequencing of 239 kb IncHI1 (pEQ1) and 287 kb IncHI1/X1 (pEQ2) plasmids was performed using the 454-Genome Sequencer FLX system. The sequences were compared using bioinformatic tools with other sequenced IncHI1 plasmids. A comparative analysis of pEQ1 and pEQ2 identified high nucleotide identity with the IncHI1 type 2 plasmids. A novel 24 kb module containing an operon involved in short-chain fructooligosaccharide uptake and metabolism was found in the pEQ backbones. The role of the pEQ plasmids in the metabolism of short-chain fructooligosaccharides was demonstrated by studying the growth of E. coli cells in the presence of these sugars. The module containing the blaCTX-M-1 gene was formed by a truncated macrolide resistance cluster and flanked by IS26 as previously observed in IncI1 and IncN plasmids. The IncHI1 plasmid changed size and gained the quinolone resistance gene qnrS1 as a result of IS26-mediated fusion with an IncX1 plasmid. Our data highlight the structure and evolution of IncHI1 from equine E. coli. A plasmid-mediated sugar metabolic element could play a key role in strain fitness, contributing to the successful dissemination and maintenance of these plasmids in the intestinal microflora of horses.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Supelco
D-(+)-Glucose, analytical standard
Supelco
Nystose, analytical standard
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Dextrose, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Supelco
Dextrose, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Dextrose, United States Pharmacopeia (USP) Reference Standard