Skip to Content
Merck

Effect of silicone on the collagen fibrillogenesis and stability.

Journal of pharmaceutical sciences (2015-01-16)
Leszek Kadziński, Magdalena Prokopowicz, Joanna Jakóbkiewicz-Banecka, Magdalena Gabig-Cimińska, Jerzy Łukasiak, Bogdan Banecki
ABSTRACT

Collagen, the most abundant protein in mammals, is able to form fibrils, which have central role in tissue repair, fibrosis, and tumor invasion. As a component of skin, tendons, and cartilages, this protein contacts with any implanted materials. An inherent problem associated with implanted prostheses is their propensity to be coated with host proteins shortly after implantation. Also, silicone implants undergoing relatively long periods of contact with blood can lead to formation of thrombi and emboli. In this paper, we demonstrate the existence of interactions between siloxanes and collagen. Low-molecular-weight cyclic siloxane (hexamethylcyclotrisiloxane-D3) and polydimethylsiloxanes (PDMS) forming linear chains, ranging in viscosity from 20 to 12,000 cSt, were analyzed. We show that D3 as well as short-chain PDMS interact with collagen, resulting in a decrease in fibrillogenesis. However, loss of collagen native structure does not occur because of these interactions. Rather, collagen seems to be sequestered in its native form in an interlayer formed by collagen-siloxane complexes. On the other hand, silicone molecules with longer chains (i.e., PDMS with viscosity of 1000 and 12,000 cSt, the highest viscosity analyzed here) demonstrate little interaction with this protein and do not seem to affect collagen activity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hexamethylcyclotrisiloxane, 98%
Supelco
Hexamethylcyclotrisiloxane, analytical standard
Supelco
Phenol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Phenol, unstabilized, ReagentPlus®, ≥99%
Sigma-Aldrich
Phenol, unstabilized, purified by redistillation, ≥99%
Sigma-Aldrich
Phenol, ≥96.0% (calc. on dry substance, T)
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC), crystalline (detached)
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.5-100.5% (GC)
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, TE-saturated, ~73% (T)
Sigma-Aldrich
Phenol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Phenol, contains hypophosphorous as stabilizer, loose crystals, ACS reagent, ≥99.0%
Supelco
Phenol solution, certified reference material, 500 μg/mL in methanol
Supelco
Phenol solution, 5000 μg/mL in methanol, certified reference material
Supelco
Phenol solution, 100 μg/mL in acetonitrile, PESTANAL®, analytical standard
Sigma-Aldrich
Phenol, for molecular biology
Sigma-Aldrich
Phenol, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Phenol solution, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, BioReagent, for molecular biology
Sigma-Aldrich
Phenol solution, BioReagent, Saturated with 0.01 M citrate buffer, pH 4.3 ± 0.2, for molecular biology
Sigma-Aldrich
Liquified Phenol, ≥89.0%
Sigma-Aldrich
Phenol, ≥99%
Supelco
Phenol, PESTANAL®, analytical standard
Sigma-Aldrich
Phenol, natural, 97%, FG
USP
Phenol, United States Pharmacopeia (USP) Reference Standard