Skip to Content
Merck
  • Targeted disruption of GAK stagnates autophagic flux by disturbing lysosomal dynamics.

Targeted disruption of GAK stagnates autophagic flux by disturbing lysosomal dynamics.

International journal of molecular medicine (2021-09-02)
Masaya Miyazaki, Masaki Hiramoto, Naoharu Takano, Hiroko Kokuba, Jun Takemura, Mayumi Tokuhisa, Hirotsugu Hino, Hiromi Kazama, Keisuke Miyazawa
ABSTRACT

The autophagy‑lysosome system allows cells to adapt to environmental changes by regulating the degradation and recycling of cellular components, and to maintain homeostasis by removing aggregated proteins and defective organelles. Cyclin G‑associated kinase (GAK) is involved in the regulation of clathrin‑dependent endocytosis and cell cycle progression. In addition, a single nucleotide polymorphism at the GAK locus has been reported as a risk factor for Parkinson's disease. However, the roles of GAK in the autophagy‑lysosome system are not completely understood, thus the present study aimed to clarify this. In the present study, under genetic disruption or chemical inhibition of GAK, analyzing autophagic flux and observing morphological changes of autophagosomes and autolysosomes revealed that GAK controlled lysosomal dynamics via actomyosin regulation, resulting in a steady progression of autophagy. GAK knockout (KO) in A549 cells impaired autophagosome‑lysosome fusion and autophagic lysosome reformation, which resulted in the accumulation of enlarged autophagosomes and autolysosomes during prolonged starvation. The stagnation of autophagic flux accompanied by these phenomena was also observed with the addition of a GAK inhibitor. Furthermore, the addition of Rho‑associated protein kinase (ROCK) inhibitor or ROCK1 knockdown mitigated GAK KO‑mediated effects. The results suggested a vital role of GAK in controlling lysosomal dynamics via maintaining lysosomal homeostasis during autophagy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3X FLAG® Peptide, lyophilized powder
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Millipore
Anti-FLAG® M2 Magnetic Beads, affinity isolated antibody
Sigma-Aldrich
Y-27632-CAS 331752-47-7-Calbiochem, Y-27632A, CAS 331752-47-7, is a cell-permeable, reversible, inhibitor of Rho kinases (Ki = 140 nM for p160ROCK). Enhances survival & cloning efficiency of ESC without affecting their pluripotency.