Skip to Content
Merck
  • Determination of total and unbound concentrations of lopinavir in plasma using liquid chromatography-tandem mass spectrometry and ultrafiltration methods.

Determination of total and unbound concentrations of lopinavir in plasma using liquid chromatography-tandem mass spectrometry and ultrafiltration methods.

Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (2014-07-23)
S M Illamola, L Labat, S Benaboud, R Tubiana, J Warszawski, J M Tréluyer, D Hirt
ABSTRACT

Lopinavir is an HIV protease inhibitor with high protein binding (98-99%) in human plasma. This study was designed to develop an ultrafiltration method to measure the unbound concentrations of lopinavir overcoming the non-specific binding issue. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of total concentrations of lopinavir in plasma was developed and validated, and an adaptation was also optimized and validated for the determination of unbound concentrations. The chromatographic separation was performed with a C18 column (100 mm × 2.1mm i.d., 5 μm particle size) using a mobile phase containing deionized water with formic acid, and acetonitrile, with gradient elution at a flow-rate of 350 μL min(-1). Identification of the compounds was performed by multiple reaction monitoring, using electrospray ionization in positive ion mode. The method was validated over a clinical range of 0.01-1 μg/mL for human plasma ultrafiltrate and 0.1-15 μg/mL in human plasma. The inter and intra-assay accuracies and precisions were between 0.23% and 11.37% for total lopinavir concentrations, and between 3.50% and 13.30% for plasma ultrafiltrate (unbound concentration). The ultrafiltration method described allows an accurate separation of the unbound fraction of lopinavir, circumscribing the loss of drug by nonspecific binding (NSB), and the validated LC-MS/MS methodology proposed is suitable for the determination of total and unbound concentrations of lopinavir in clinical practice.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Methanol, analytical standard
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)