Skip to Content
Merck
  • Palmitoylation and plasma membrane targeting of RGS7 are promoted by alpha o.

Palmitoylation and plasma membrane targeting of RGS7 are promoted by alpha o.

Molecular pharmacology (2004-10-22)
Satoshi Takida, Christopher C Fischer, Philip B Wedegaertner
ABSTRACT

Regulator of G protein signaling (RGS) proteins modulate G protein signaling by acting as GTPase-activating proteins for G protein alpha-subunits. RGS7 belongs to a subfamily of RGS proteins that exist as dimers with the G protein beta(5)-subunit. In this report, we addressed the mechanisms of plasma membrane localization of beta(5)RGS7. When expressed in human embryonic kidney 293 cells, beta(5)RGS7 was found to be cytoplasmic and soluble. Expression of alpha(o) promoted a strong redistribution of beta(5)RGS7 to the plasma membrane. Expression of alpha(q), however, failed to affect the subcellular localization of beta(5)RGS7. The constitutively active mutant alpha(o)R179C, like wild-type alpha(o), strongly recruited beta(5)RGS7 to plasma membranes; however, inactive alpha(o)G204A, RGS-insensitive alpha(o)G184S, and lipidation-deficient alpha(o)G2A were all defective in the ability to promote plasma membrane localization of beta(5)RGS7. In addition, palmitoylation of RGS7 was demonstrated, and palmitoylation required expression of alpha(o) or alpha(o)R179C. To examine potential palmitoylation sites of RGS7, several cysteines were substituted with serines. beta(5)RGS7C133S failed to localize to plasma membranes when coexpressed with alpha(o), suggesting cysteine 133 of RGS7 as a putative palmitoylation site. Finally, deletion of amino acids 76 to 128 of RGS7, which includes part of the disheveled, EGL-10, pleckstrin (DEP) domain, prevented alpha(o)-mediated plasma membrane recruitment of beta(5)RGS7. These findings are the first to demonstrate Galpha-regulated plasma membrane localization and palmitoylation of beta(5)RGS7 and suggest that membrane targeting of beta(5)RGS7 is a complex process requiring at least RGS domain-mediated interaction with alpha(o) and RGS7 palmitoylation.