- The role of brain-derived neurotrophic factor in bone marrow stromal cell-mediated spinal cord repair.
The role of brain-derived neurotrophic factor in bone marrow stromal cell-mediated spinal cord repair.
The ability of intraspinal bone marrow stromal cell (BMSC) transplants to elicit repair is thought to result from paracrine effects by secreted trophic factors including brain-derived neurotrophic factor (BDNF). Here we used gene therapy to increase or silence BDNF production in BMSCs to investigate the role of BDNF in BMSC-mediated neuroprotection. In a spinal cord organotypic culture, BMSC-conditioned medium significantly enhanced spinal motoneuron survival by 64% compared with culture medium only. Only conditioned medium of BDNF-hypersecreting BMSCs sustained this neuroprotective effect. In a rat model of spinal cord contusion, a BDNF-dependent neuroprotective effect was confirmed; only with a subacute transplant of BDNF-hypersecreting BMSCs were significantly more spared motoneurons found at 4 weeks postinjury compared with vehicle controls. Spared nervous tissue volume was improved by 68% with both control BMSCs and BDNF-hypersecreting BMSCs. In addition, blood vessel density in the contusion with BDNF-hypersecreting BMSCs was 35% higher compared with BMSC controls and sixfold higher compared with vehicle controls. BDNF-silenced BMSCs did not survive the first week of transplantation, and no neuroprotective effect was found at 4 weeks after transplantation. Together, our data broaden our understanding of the role of BDNF in BMSC-mediated neuroprotection and successfully exploit BDNF dependency to enhance anatomical spinal cord repair.