跳转至内容
Merck
  • Reduced Expression of Galectin-9 Contributes to a Poor Outcome in Colon Cancer by Inhibiting NK Cell Chemotaxis Partially through the Rho/ROCK1 Signaling Pathway.

Reduced Expression of Galectin-9 Contributes to a Poor Outcome in Colon Cancer by Inhibiting NK Cell Chemotaxis Partially through the Rho/ROCK1 Signaling Pathway.

PloS one (2016-03-31)
Yang Wang, Jintang Sun, Chao Ma, Wenjuan Gao, Bingfeng Song, Hao Xue, Weiliang Chen, Xi Chen, Yun Zhang, Qianqian Shao, Qingjie Wang, Lei Zhao, Jia Liu, Xiuwen Wang, Huayang Wang, Yun Zhang, Meixiang Yang, Xun Qu
摘要

Galectin-9 is a widely expressed protein that is involved in immune regulation and tumorpathogenesis and serves as a marker of a poor prognosis in various types of cancers. However, the clinical impact and the precise mechanism by which this protein contributes to colon tumor progression are unclear. In the present study, we detected the expression of galectin-9 and CD56 cells using immunohistochemistry. Spearman's rank correlation was used to clarify the association between galectin-9 expression and natural killer (NK) cell infiltration. The influence of galectin-9 on NK-92 cell migration was evaluated in vitro using transwell chemotaxis assays. The role of rh-galectin-9 in F-actin polarization in NK-92 cells was investigated using laser scanning confocal microscopy. We showed that galectin-9 was expressed in 101 (78.91%) colon tumor tissues and that was expressed at lower levels in these tissues than in para-tumor tissues. Low levels of galectin-9 expression were positively correlated with a poor histological grade and lymph node metastasis (P<0.05). A Kaplan-Meier method and Cox proportional hazards regression analysis showed that overall survival was longer in patients with high galectin-9 expression in an 8-year follow-up (P<0.05). Spearman's rank correlation indicated that there was a linear correlation between galectin-9 expression and CD56+ NK cell infiltration (R(2) = 0.658; P<0.0001). Galectin-9 stimulated migration in human NK-92 cells by affecting F-actin polarization through the Rho/ROCK1 signaling pathway. These results suggest that galectin-9 expression potentially represents a novel mechanism for tumors to escape immune surveillance in colon tumors.